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rbed Effect

1 There is a fundamental and inescapable limitation on achievable design
specifications in feedback control systems

O The sensitivity function, |S(s)| is the transfer function from the reference input r
(Set-point) to the tracking error e

[ The overall transfer function gain is less sensitive to variations in the process gain
by a factor of |S|

E(s) = (I + L(s)) "R(s) = S(s)R(s)
d disturbance

Tracking
error Process

e
Set-point 7 Q—y@—o—y L(S) —»@——o——»{)y Measured output

L(s) = P(s)C(s)

Unity feedback control system



(J Bode showed that for a system with an excess of at least two more poles than
zeros and no right-half plane (RHP) poles,fooo In(|S|))dw =0

1 This means that if the sensitivity is to be reduced in a certain frequency range,
then of it must be increased in another frequency range. This is referred to as the
waterbed effect.

O If the system has n,, unstable poles then, fooo In(|S))dw = Z?jl Re{p;}

[ Recently [Emami-Naeini, D. de Roover, 2015] we have derived a new
fundamental result that has been seemingly masked by previous derivations :

—g(i(n—pi)}ow
—%{i(n—pi)ﬁz"zpi],OLu

[Injs(jw)de =
0

1 The fundamental relationship is that the sum of areas underneath the In(|S]) is
related to the difference in speeds of the closed-loop system and the open-loop
system. This makes much intuitive sense.
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_ct: Conservation of Sensitivity Dirt

10 otz Design %3 [ The Waterbed Effect can be viewed
as a “sensitivity dirt,” conservation
law for control systems.

Gunter Stein, “Respect the Unstable”, IEEE Control Systems
Magazine, Aug. 2003.

Log Magnitude

Sensitivity function for L(s)=10/((s-1)*(s+2))

A1 =-1.482, A2 = 4.623, sum(A1,A2) = 3.14
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L(s) =

L(s) =

(s+1) (s + 1)

A1=-1571, A2 = 0.000, sum(A1,A2) = -1.57 A1 =-0.874, A2 = 0.874, sum(A1,A2) = 6.18e-10
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Proportional Integral Derivative
Gain Gain Gain
N /
K; KdS
C(s) =K, + — A

s Tus+ 1

- K,
e | K =J2\ u
S

TdS-l—l

G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback
Control of Dynamic Systems, 7th ed. Prentice-Hall, 2015.



d Assume the plant can be approximated by:

K
(tis+1)(Ts+ 1)

P(s) =

1 Assume the desired closed-loop transfer function is given by:

2
wdes

(52 + 2BWgesS + W5,5)

T ges(s) =

[ Then the following selection of PID tuning parameters will yield the desired

closed loop:
K — (2Bwges(T1+72) — 1) K.— Wdes
P 4K B2 ' T 2KB
(Zﬁwdesrl o 1) (ZﬁwdesTZ o 1) 1
8KB Wes Zﬁ(‘l’des

Only 2 tuning knobs: f and w g .¢! (desired closed-loop damping and bandwidth)
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w, =0.05: A1=-0.028, A2 =0.028 w, =0.10: A1 =-0.055, A2 =0.055

0.5 0.5

Varying the tuning
parameters and

inspecting the o e !
Waterbed Effect ©.. g
allows for . ,

efficient tuning of | B = 1, @Wges = 0.05 | = B=1wges =0.1
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(d Temperature control of heated plates is important in many thermal
processing systems (RTP, Etch, Bake, MOCVD, etc.)

[ The dynamic response of the system can change considerably depending
on operating temperature, wafer types, and/or process conditions

O Ideally one would like to get the exact same closed-loop temperature
response (performance) despite these system variations (robustness)

O In this example we will look how changes in system parameters affect the
closed-loop dynamics in terms of the waterbed effect



O A tungsten-halogen lamp is shown wctvvcceeciiiirieeciiree: \Walls
heating a plate from below % %

[ The plate radiates, conducts, and
convects heat to the walls and Plate
surroundings

(d The system can be divided into a %Heat flux g

number of control volumes and the N \VVVVVWVVWVWW A~ Lamp
heat equation can be written for the %

net rate of temperature change:

T — £(T — o(T . Walls
— p—

/ ( vu)v Yy=4g ( )7
Dynamic System of Equations Sensed Temperature

For each control volume, i

mT)T, = Q}(T) + QS(T) + QU(T) + b,

Thermal mass Radiation Conduction Convection Electrical Power In
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d The heat loss from the plate to the surroundings

¢ = €o(TH = TL) + h(T, — Ty,

;

Effective emissivity Effective heat transfer coefficient
| . 1
Effective emissivity for € =
o 19
infinite parallel surfaces €1 €2
/ AN
Surface 1 Surface 2

We will look at control performance when these two parameters (¢ and h) vary.
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Plate emissivity can change in ways that are difficult to predict
Changes in gas flows or gas chemistry can change the heat losses

Changes can be “wafer-to-wafer” or during processing (dynamic)

o O O O

If you knew how the losses changed, you could tune the controller for a
specific process condition

O

But often you cannot know about changes so the controller must be robust

O

Robustness here is defined as good performance for a wide range of process
conditions
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nd Closed-Loop Control

d Consider the following closed-loop system, where P denotes the heated

plate, and C denotes the PID feedback controller

r

Reference

Controller

C'(s)

Error

System
U
— P(s)
Command

Y

Heat loss from plate to surroundings:

g5 = eo(Ty = Ty) + (T — Ts),

T

Effective
emissivity

Effective heat

transfer coefficient
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Bode Plot Nominal System

 Nominal plant is 60
obtained by 5
linearizing non-linear
thermal system at
operating point e, =
0.6, hy,=50,and T, =
600C

10 Nominal 4th order
2nd Order approximation
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Variationine
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d Using the presented PID tuning procedure, a controller was obtained
based on the 2" order plant parameters from the previous slide, and
tuning parameters = 1, w4.; = 0.1 [rad/s]

Bode Plot of PID Controller Corresponding Sensitivity Function

Bode Diagram

0 Nominal Performance: A1 =-0.055, A2 =0.055
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s for Varying Process Conditions

low e: A1=-0.057, A2 = 0.057 05 low h: A1 = -0.055, A2 = 0.055

05 low T: A1 =-0.055, A2 = 0.055
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Critical ‘waterbed’ characteristics of a nominal set of PID parameters for
a range of plate properties and operating conditions of a heated plate.
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O Summary of 3000 simulations where three critical waterbed parameters were calculated
for variations in emissivity and heat transfer coefficient over the entire operating range
from 250°C to 1150°C

L As the target temperature increases, the area for disturbance rejection and corresponding
cross-over frequency increases, but so does the area for noise amplification
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O PID controllers are ubiquitous in semiconductor process control

1 We proposed a new method of tuning PID controllers using the
fundamental waterbed effect from control systems theory

1 We applied the new methodology to heating of a plate used in
semiconductor process control

L Use of the waterbed effect allows for efficient tuning of PID
controllers
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