Optimization of Heater Zone Layout for a Rotating Susceptor in a Cold-wall MOCVD Reactor

<u>Jon Ebert</u>, Dick de Roover, Sarbajit Ghosal, Abbas Emami-Naeini SC Solutions, Inc. 1261 Oakmead Pkwy., Sunnyvale, CA 94085 Email: <u>jle@scsolutions.com</u>

> APC Conference XXIX 2017 Austin Airport Hilton Hotel 9515 Hotel Dr, Austin, TX 78719X October 9-12, 2017

Overview

□ Metal-organic Chemical Vapor Deposition (MOCVD)

- CVD with metal-organic precursors (e.g., tri-methyl gallium)
- Used to manufacture Light Emitting Diodes (LEDs)

A Case Study of Temperature Control of a Rotating Susceptor CVD Reactor

- Describes our Model-Based Control (MBC) approach using modeling, optimization and, control tools.
- Evaluate design limits for a range of operating conditions.

G Summary

Physical Model-Based Control

Advantages

- Modeling for Control Design

- Controller is tested in simulation for wide range of conditions.
- Much of the control design can be done without access to equipment.
- Ability to do controller development in parallel with chamber development.

Modeling for Equipment Design

- A model of the system that can be modified for "what-if" studies.
- Provides a tool for troubleshooting.
- Path for continued improvement.

MOCVD for LEDs

- MOCVD is used to produce Light Emitting Diodes (LEDs) by reacting metal-organic precursors (e.g.,tri-methyl gallium, trimethyl indium, etc.).
- Increasingly important for many applications (LED TV's, Lighting, etc.) due to potential for high efficiency.
- InGaN/GaN multiple quantum well (MQW) structures are grown on sapphire substrates for green, blue, and white LEDs.

W. E. Quinn, Driving Down HB-LED Costs: Implementation of Process Simulation Tools and Temperature Control Methods for High Yield MOCVD Growth, Final Technical Report DoE Grant DE-EE0003252, p. 2012

- Studies* have shown that LED properties such as photoluminescence and electroluminescence can vary by a *factor of two* if the substrate temperature is changed from 1000°C to 1030°C.
- □ Involves many process steps over a wide temperature range (500-1100°C).
- ❑ As a result, *real-time control* of substrate temperature to within 1°C or less is essential for repeatable manufacturing of LEDs with *desired color*.

* For example, see J. W. Ju, *et al.*, "Effects of p-GaN Growth Temperature on a Green InGaN/GaN Multiple Quantum Well," Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 810-813.

Finite Element (FEM) Model

A vertical reactor with top-side showerhead and rotating susceptor.

2D Axisymmetric FEM model – Non-isothermal flow, with swirl and buoyancy.

The temperature on the CVD Surface is critically important

Example Operating Conditions

- **Operating flow rate range is 5 slm** \leq Q \leq 50 slm (slm = standard liters per minute)
- **Required temperature uniformity of ± 0.5°C** (over widest possible area of susceptor)

The goal is to adjust the control flux, q(r), to get good temperature uniformity on the CVD Surface.

Heat Transfer

Gas Convection and Conduction

- The cold gas (27°C) is injected at the showerhead.
- $\,\circ\,\,$ Convective cooling flux of the susceptor is of order 10^4 W/m^2.
- \circ q_c = h(T_{sus}-T_{wall}), h is of order 10-100 W/m²°C.

Radiation

- \circ q_r = εσ (T_{sus}⁴ T_{wall}⁴), ε = effective emissivity, σ = Stefan-Boltzmann constant.
- \circ Radiation losses are of order 10⁵ W/m².
- $\circ~$ Radiation does not vary with flow rate or pressure.

Conduction

- Gas conduction is fairly high for Hydrogen (compared to other gases).
- Solid conduction in susceptor is important since we heat from backside.

The distribution of heat transfer at the CVD surface varies with flow rate and pressure due to changes in convection heat transfer.

Heater Zone Definition

It is common to divide the control flux into a number of independently controlled "zones".

Here we divide the control flux into six independent zones.

Uniformly divided along the radius

Baseline System Performance

Optimal Control

In words:

- Find the input control flux, q, for each heater that produces the best temperature uniformity.
- subject to the constraint that $q \ge 0$.
- the uniformity is optimized over limited radius (r < Rmax).</p>

Mathematically:

$$q_{\text{opt}} = \arg \min_{q} ||T_{\text{ref}} - T(r, q)||$$

s.t. $q \ge 0$
 $0 \le r \le R_{\text{max}}$

How Many Independent Heaters do we Need?

- In practice, for each independent heater we need additional power supply and additional temperature sensor which is expensive. We want as few as possible.
- U We also want uniformity over the largest possible radius (Rmax).
- Can we make ONE heater work for the entire operating range of pressure and flow rate?
- Strategy: fix the ratio of each heater power from baseline optimal result (100 Torr, 50 slm) and scale this power distribution up and down with one input scaling.
 - This ratio can be done in hardware (e.g., filament density distribution, or resistance variation, etc.)
 - One zone control requires only one temperature sensor.

Optimizing Rmax (6-zone control)

100 Torr, 50 slm

One-zone Control

□ We found the "optimal" Rmax to produce the largest area of temperature within design limits.

Next we want to optimize the input flux distribution for different operating conditions.

□ First we look at 1-zone control, then look at the improvement of increasing the number of independent control zones.

One Zone Control

Lower Pressure Flow fields (100 Torr)

T[degC], SLM=50, p=100 Torr, RPM=100

For slower flow we start to see some "lift" of the streamlines at larger radius.

Higher Pressure Flow fields (500 Torr)

T[degC], SLM=50, p=500 Torr, RPM=100

500 Torr, 50slm

Buoyancy driven recirculation is causing a significant redistribution of the convective losses.

500 Torr, 5slm

Buoyancy driven recirculation even more complex here.

1-zone control cannot work for this range of operating conditions.

Two-zone Control

Six-zone Control

Temperature Uniformity vs Number of Control Zones

Temperature Uniformity vs Number of Zones

Implementation using Model-Based Control (MBC)

□ The controller, C, adjusts the flux, q, to make the temperature T on the CVD surface uniform at the reference temperature, T_{ref}.

This is a form of the "inverse problem".

(What inputs do I need to produce a given output?)

Real-time feedback is a common method of dynamically solving this problem.

Here we focus on steady-state, but the same methods are used to solve the time-varying dynamic control problem (e.g., uniformity during temperature ramp, stabilization, etc.).

Dynamic Control Performance using Model-Based Control

W. E. Quinn, Driving Down HB-LED Costs: Implementation of Process Simulation Tools and Temperature Control Methods for High Yield MOCVD Growth, Final Technical Report DoE Grant DE-EE0003252. Oct 2017 Copyright © 2017, SC Solutions, Inc. All Rights Reserved 21

Summary

- This study illustrates how modeling tools can be used together with control design tools to evaluate optimal closed-loop control performance of a system using Model-Based Control (MBC).
- In this particular study with a MOCVD system, after testing various multizone heater configurations, a six-zone control scheme was adopted with each heater being controlled independently.
- Temperature uniformity is much better than the specification over most of the area (0.7°C compared to 1°C specification).
- □ Fewer independent heater zones are needed if uniformity requirement is relaxed slightly (4 zones sufficient for ± 1°C).
- Additionally, the results point to a need to eliminate "roll cells" in the flow, either by changing the geometry, increasing the flow rate, or increasing the rotation rate.

SC SOLUTIONS

Value Through Innovation