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Overview

J Metal-organic Chemical Vapor Deposition (MOCVD)
o CVD with metal-organic precursors (e.g., tri-methyl gallium)
o Used to manufacture Light Emitting Diodes (LEDs)

J A Case Study of Temperature Control of a Rotating Susceptor
CVD Reactor

o Describes our Model-Based Control (MBC) approach using
modeling, optimization and, control tools.

o Evaluate design limits for a range of operating conditions.

d Summary



Physical Model-Based Control

Design Process Advantages
Construct Modeling for Control Design
Physics-based = Controller is tested in simulation for
Model wide range of conditions.
‘ =  Much of the control design can be
: done without access to equipment.
Design
Controllerin = Ability to do controller development
Simulation in parallel with chamber
‘ development.
Validate model Modeling for Equipment Design
with Data = A model of the system that can be
‘ modified for “what-if” studies.

= Provides a tool for troubleshooting.

Adjust Model to
Match Data = Path for continued improvement.
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MOCVD for LEDs

MOCVD is used to produce Light Emitting
Diodes (LEDs) by reacting metal-organic
precursors (e.g.,tri-methyl gallium, tri-

methyl indium, etc.).
Increasingly important for many

applications (LED TV’s, Lighting, etc.) due to

potential for high efficiency.

InGaN/GaN multiple quantum well (MQW)

structures are grown on sapphire

substrates for green, blue, and white LEDs.
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Studies™ have shown that LED properties such as photoluminescence and
electroluminescence can vary by a factor of two if the substrate temperature is

changed from 1000°C to 1030°C.

Involves many process steps over a wide temperature range (500-1100°C).

As a result, real-time control of substrate temperature to within 1°C or less is
essential for repeatable manufacturing of LEDs with desired color.

* For example, see J. W. Ju, et al., “Effects of p-GaN Growth Temperature on a Green InGaN/GaN Multiple Quantum
Well,” Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 810-813.



Finite Element (FEM) Model

A vertical reactor with top-side showerhead and rotating susceptor.
2D Axisymmetric FEM model — Non-isothermal flow, with swirl and buoyancy.
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Example Operating Conditions

O Hydrogen is the main carrier gas

A

S| 50
(J Nominal operating temperature is 1100°C. }; Process

S Window

3
(J Susceptor rotation rate = 100 RPM < 100 500

>
Pressure (Torr)

(J Operating pressure range is 100 Torr < p < 500 Torr
(d Operating flow rate range is 5 sim £ Q <50 sIm

O Required temperature uniformity of + 0.5°C

The goal is to adjust the control flux, q(r), to get good temperature
uniformity on the CVD Surface.




Heat Transfer

J Gas Convection and Conduction
o The cold gas (27°C) is injected at the showerhead.
o Convective cooling flux of the susceptor is of order 10* W/m?.
o q.=h(T,T,a) hisoforder10-100 W/m?°C.

 Radiation
o q,=¢0 (T, *—T,.*) € = effective emissivity, o = Stefan-Boltzmann constant.
o Radiation losses are of order 10> W/m?.

o Radiation does not vary with flow rate or pressure.

1 Conduction
o Gas conduction is fairly high for Hydrogen (compared to other gases).
o Solid conduction in susceptor is important since we heat from backside.

 The distribution of heat transfer at the CVD surface varies with flow
rate and pressure due to changes in convection heat transfer.



Heater Zone Definition

1 It is common to divide the control flux into a number of independently
controlled “zones”.

(J Here we divide the control flux into six independent zones.

o Uniformly divided along the radius

o Heaters can be made in many ways This is the system to be controlled
= Resistive films

= [amp arrays e e e e e e e —
= Hot filaments : | Gas inflow
|

» RF Inductive elements
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Optimal Control

In words:

: Find the input control flux, g, for each heater that produces the best
temperature uniformity.

. subject to the constraint that q 2 0.

- the uniformity is optimized over limited radius (r < Rmakx).

Mathematically:
Qopt = arg mqin | ’Tref — T(T‘, Q) ‘ |

st. g>0
0 <7r < Rpax



How Many Independent Heaters do we Need?

 In practice, for each independent heater we need additional power
supply and additional temperature sensor which is expensive. We want
as few as possible.

(J We also want uniformity over the largest possible radius (Rmax).

J Can we make ONE heater work for the entire operating range of
pressure and flow rate?

] Strategy: fix the ratio of each heater power from baseline optimal
result (100 Torr, 50 sim) and scale this power distribution up and down
with one input scaling.

o This ratio can be done in hardware (e.g., filament density distribution, or
resistance variation, etc.)

o One zone control requires only one temperature sensor.



Optimizing Rmax (6-zone control)

100 Torr, 50 sim
It is only possible to get

Effect of Maximum Control Radius (Rmax)
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One-zone Control

(J We found the “optimal” Rmax to produce the largest area of
temperature within design limits.

(J Next we want to optimize the input flux distribution for different
operating conditions.

 First we look at 1-zone control, then look at the improvement of
increasing the number of independent control zones.
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Lower Pressure Flow fields (100 Torr)
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Higher Pressure Flow fields (500 Torr)
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Implementation using Model-Based Control (MBC)

[ The controller, C, adjusts the flux, g, to make the temperature T on the
CVD surface uniform at the reference temperature, T, ..

Controller MOCVD System
re;1100 Q) q T(r)
C —> P >
>
/ Feedback \
7 \
Control design tool < > Modeling tool

1 This is a form of the “inverse problem”.
(What inputs do | need to produce a given output?)
 Real-time feedback is a common method of dynamically solving this
problem.

Here we focus on steady-state, but the same methods are used to solve the time-varying
dynamic control problem (e.g., uniformity during temperature ramp, stabilization, etc.).



Dynamic Control Performance using Model-Based Control
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Summary

 This study illustrates how modeling tools can be used together with
control design tools to evaluate optimal closed-loop control
performance of a system using Model-Based Control (MBC).

 In this particular study with a MOCVD system, after testing various
multizone heater configurations, a six-zone control scheme was
adopted with each heater being controlled independently.

J Temperature uniformity is much better than the specification over
most of the area (0.7°C compared to 1°C specification).

J Fewer independent heater zones are needed if uniformity
requirement is relaxed slightly (4 zones sufficient for + 1°C).

1 Additionally, the results point to a need to eliminate “roll cells” in the
flow, either by changing the geometry, increasing the flow rate, or
increasing the rotation rate.
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