DOE NPH Meeting

Fluid-Soil-Structure Interaction Analysis of Tank for Seismic Evaluation of Nozzle Subjected to Differential Movement

October 23, 2018

LA-UR-18-29880

Problem Statement

- Seismically qualified critical storage tanks
- Nonlinear anchor response
- Founded on soft soil with stiffness reversals

Problem Statement

DNFSB concern:

- Over-restrained pipetank connection
- SAM-induced stress at connection

Previous Analysis

Max soil displacement + allowable anchor elongation

Concluded nozzle significantly overloaded

SC SOLUTIONS, Inc. © 2017

Project Scope

Assess functionality (pressure retention) of tank and draw-off piping connection during and after DBE

Phase 1: Determine if detailed analysis can address concern

Phase 2: Perform final analysis and documentation to full code and QA requirements for support of safety basis

Acceptance Criteria

- No failure of tank shell at piping connection
 - API 650 moment capacity
 - AWWA allowable stress
- No failure of draw-off piping at connection
 - ASME B31E
- No local tank failure caused by anchor behavior
 - SQUG GIP 3A
 - Elongation limit ~1%

Global System Model

Global System Model

Soil Model

- Equivalent linear properties
- Visco-elastic material model
- 400x400x500 ft. soil domain
- Single soil profile
- Single time history
- Lysmer damper

Soil Verification

Fluid-Structure Model

- Tank shell elements
 (w/ beam elements)
- Fluid continuum elements
- Lagrangian fluid model
- Fluid constrained w/in tank:
 - Horizontally along wall
 - Vertically across base

Nonlinear Anchor Model

Nonlinear Anchor Response

SC SOLUTIONS, Inc. © 2017

Model Verification

- Site response analysis deconvolution
- Finite element soil model site response
- Fluid model static and modal response
- Nonlinear anchor behavior
- Nozzle response due to uplift
- System behavior in sensitivity studies

Response at Maximum Nozzle Stress

Response at Maximum Nozzle Stress

System Response

Nozzle demands driven by:

Fluid convection

• Fluid stress (impulse)

• Tank rocking and uplift

Local tank – nozzle deformation

Nozzle demands driven by:

• Fluid convection

• Fluid stress (impulse)

• Tank rocking and uplift

Local tank – nozzle deformation

Nozzle demands driven by:

• Fluid convection

• Fluid stress (impulse)

• Tank rocking and uplift

Local tank – nozzle deformation

Nozzle demands driven by:

• Fluid convection

• Fluid stress (impulse)

• Tank rocking and uplift

• Local tank – nozzle deformation

Forces at Tank Wall

Time, s

1. Tank rocking and uplift contribution weaker than anticipated

2. Local tank longitudinal differential displacement observed

3. Overall maximum stress due to combined behavior

Sensitivity Studies

Purpose: Confirm behavior, inform Phase 2

Varied Parameters:

- Stiff anchors
- Reduced water height
- 1st pipe support removed
- Longitudinal support removed

Ζ

Y.

• Time history variability

Benefits of Detailed Analysis

- Nozzle moments roughly 1/3
- Reduced tank displacement due to SSI rocking effect
- Combined FSI-SSI-nonlinear anchor response explicitly captured
- Local tank deformation a result of combined system response vs. imposed boundary conditions

Project Conclusion

- Functionality controlled by tank shell stress
- Anchor strain close to recommended limit
- Tank experienced minor overstress
 - ~10% above yield stress, half of tensile stress

Detailed analysis likely to address concern given acceptability of minor overstress

Questions?