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Abstract— Multivariable Nyquist eigenloci provide a much
richer family of curves as compared to the SISO case. The
eigeloci may be computed symbolically in many simple cases.
Inspection of the generalized Nyquist eigenloci plot allows the
determination of the exact values of the multivariable gain
margin (GM), phase margin (PM), and the complex margin
(CM). Hence there is no need to compute estimates of GM
and PM from the singular values of the sensitivity and the
complementary sensitivity functions as they are usually very
conservative. Furthermore, the complex margin allows the
computation of the minimum additive equal diagonal complex
perturbation, and the associated multiplicative complex per-
turbation that drives the system unstable. All the computations
mirror the SISO case. The ideas are applied to semiconductor
wafer manufacturing process control and aerospace examples.

I. INTRODUCTION

The Nyquist criterion is an important stability test with
applications to systems, circuits, and networks [1]. It is
also the foundation of robust control theory. The beauty
of the Nyquist stability criterion lies in the fact that it is
a rather simple graphical test. In this paper we explore
the use of the generalized Nyquist criterion to study the
shapes of multivariable Nyquist loci and compute stability
margins. The eigenloci can be computed symbolically for
rather simple cases. The multivariable Nyquist eigenloci
provide a much richer family of curves as compared to
the SISO case [2]. While the shapes include classical plane
curves such as the limacon, cardioid, Cayley’s sextic, etc.,
they seem to have much more complicated shapes not seen in
the SISO case. The technique of plotting the eigenloci of the
open-loop transfer function matrix allows determination of
the stability of multivariable systems for a range of gains by
inspection [3]. There are three approaches to the determina-
tion of robust stability: (1) p analysis [4], (2) excess stability
margin k,,, [5], and (3) the use of the generalized Nyquist
stability criterion. Inspection of the multivariable Nyquist
eigenloci plot allows determination of the exact values of
the multivariable gain margin (GM) and phase margin (PM)
and the complex margin (CM). All the computations mirror
the SISO case. This approach makes the computation of
GM and PM from singular value plots of the sensitivity
and complementary sensitivity functions unnecessary as they
are generally very conservative. Furthermore, the complex
margin allows computation of the exact minimum additive
equal diagonal complex perturbation and the associated mul-
tiplicative perturbation that drives the system unstable.
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The closest results to ours appear in [6]. It is true that the
generalized stability criterion only determines stability with
respect to a single gain in all of the input channels. As such
one could argue that this does not characterize the robust
stability property for arbitrary perturbations. Nevertheless,
we believe that the measures are very helpful in multivariable
control system design especially when used in conjunction
with more sophisticated robustness analysis approaches such
as p, ky,. For example, in many cases in practice the designer
is concerned about robustness with respect to actuator uncer-
tainties such as in rapid thermal processing (RTP) [8]. In this
application the lamp actuators are identical with the same
nonlinearities. These are not “unstructured” uncertainties.
Th same gain in all channels is not a significant restriction
necessarily as uneven distribution of the gain can also be ac-
commodated by scaling the loop gain L(s) (pre-multiplying
by a scaling matrix) and recomputing the robustness margins.
Several illustrative examples are provided.

The organization of this paper is as follows. In Section
2 we review the generalized Nyquist criterion. In Section 3
we define the multivariable GM, PM, CM and extend some
SISO results to MIMO systems. Examples appear in Section
4. Concluding remarks are in Section 5.

II. THE GENERALIZED NYQUIST STABILITY CRITERION

Consider the feedback system shown in Figure 1 where
L(s) is a proper square rational m x m matrix and let K > 0.
Assume there are no hidden unstable modes of the system.
Note that this structure means we have the same gain K in
each loop. Let the m eigenvalues of K L(s) be denoted by
A1, A2, ..., A, Which are the solutions to

det [\i(s)I — KL(s)] =0, i=1,2,...,m, (1)
and result in
det [\ — KL(s)] = A" 4+ g,()A™ 4 ... 4+ gm(s), )

where the g¢;(s) are proper rational functions of s. It is
known [2] that the unordered eigenvalues of a matrix are
a continuous function since the eigenvalues of a matrix are
a continuous function of its elements.

Theorem 1 [3]: If K L(s) has P unstable poles, then
the closed-loop system with return ratio —K L(s) is stable
if and only if the eigenloci of KL(s), taken together,
encircle the —1 point P times in counter-clockwise direction,
assuming that there are no hidden modes (unstable pole-zero
cancellations). |
The eigenloci are the loci of the eigenvalues of the loop gain
transfer matrix parameterized as a function of frequency.
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Fig. 1. MIMO unity feedback system.

Theorem 1 suggest that instead of plotting the Nyquist
eigenloci of det(I + KL(s)), one can plot the eigenloci
of A\;(L(s)),i = 1,2,..,m, and count the number of
the encirclements of the —1/K point as illustrated by the
examples in this paper.

III. ROBUSTNESS METRICS: MULTIVARIABLE GAIN,
PHASE, AND COMPLEX MARGINS

Gain, phase, and complex margins are defined to describe
the proximity of the Nyquist eigenloci to the —1 point. We
define the multivariable gain and phase margins by injecting
a complex equal diagonal perturbation diag {k;e??:} at the
plant input. We note that this is the same as perturbations at
the plant output for our unity feedback system in Figure 1.

Gain Margin (GM): Let ¢; = 0 and k; = K be
the minimum gain factor in all channels that drives the
system unstable, ¢ = 1,2,--- ;m. We may determine the
multivariable GM as follows. From (4) we have that

det [I + KL(s)] = =1+ KX\i(s)) =0,  (3)
resulting in )

— , 4

Ai(jw) @

or we find the minimum value of K > 1 for which the above
equations (3)-(4) have a solution for some w

1
>‘i (jWGM) .
Assume that the system has a nominal gain K, and the

Nyquist Stability analysis shows that the system is stable for
K1 < Kpom < Ks. Then the “upward gain margin” is

Ko

GM

GM = |K| = 5)

GM, = , 6
KI]OII] ( )
and the “downward gain margin” is:
K
GMy = . 7
=g (7)

It is customary to pick K, = 1 in stability margin analysis.
These definitions are the same ones as in the SISO case [8].

Phase Margin (PM): Let k; = K = 1 and ¢; be the
minimum phase lag in all channels that drives the system
unstable, ¢ = 1,2,--- ,;m. We insert the complex diagonal
perturbation k;e~7%: I in front of the loop gain. With K = 1

det [I+ KL(s)] = IIZ7(1 + e 7% \(s)) =0, (8)

we have

e %\ (jw) = —1, 9)

227

and we find the minimum value of ¢; > 0 for which the
above equations (8)-(9) have a solution for some w,,,

PM = ¢; = 180° + arg(\; (Jwp,, ), (10)

hence the Phase Margin (PM) is determined when the magni-
tude of |\;(jw)]| is unity. We compute the PM by measuring
the angle formed by the real axis and the line going through
the origin and the point where a circle of radius one centered
at the origin intersects the Nyquist eigenloci. Again, this is
the same as in the SISO case [8].

Complex Margin (CM): O. J. M. Smith [9] introduced
the idea of a vector margin for the SISO case. Because the
vector margin is a single margin parameter, it removes all
the ambiguities in assessing stability that comes with GM
and PM in combination. In the past it has not been used
extensively due to the difficulty in computing it. However,
that barrier has been removed and the idea of using the vector
margin [8] and the complex margin to describe the degree of
stability is much more feasible now due to faster CPUs. Let o
be the vector from the —1 point to the closest approach point
of the Nyquist eigenloci. @ may be determined as follows

|a(wy)] = inf min|l + X\ (KL(jw))|,i=1,2,--- ,m.

[ (1 1)
We refer to « as the multivariable complex margin (CM)
and the corresponding frequency as w;. Note that || is the
radius of the smallest circle with the center at —1 that is
tangent to the Nyquist eigenloci. If the points of tangency
are at (a & jb), then the multivariable complex margin is
given by

a=—1—(a=xjb), (12)
where

Ai(jwi) = a % jb, (13)
and A = «l is the minimum additive equal diagonal

complex perturbation that drives the system unstable and
Aq a(KL)™! is the associated multiplicative complex
perturbation that drives the system unstable. The vector
margin is the same as « for SISO systems [6].

Theorem 2: Consider the proper square (m x m) rational
multivariable system with the unity feedback system with
loop transfer function K L(s) with no hidden unstable modes.
Assume that the closed-loop system is stable for the nominal
gain K = K,on = 1 and also for the range of gains
K1 < Kpom < Ks. Then the upward gain margin is GM,,
and the downward gain margin is GMy as in Eqn. (6)-(7).
The phase margin (PM) is given by Eq. (10). The complex
margin « is given as in Eqn. (11-12). The minimum additive
complex equal diagonal perturbation A = «l drives the
system unstable.

Proof: The addition of the gain factors of GM,, or GMy,
to the loop gain, L(s), will decrease/raise the gain of the
system and will expand/contract the eigenloci of the product,
GM,; L(s), and will force it to just pass through the —1 point
resulting in sustained oscillations. Hence the closed-loop
system will go unstable for any additional gain perturbation.



Similarly, the addition of the phase lag/phase advance (due
to symmetry of the eigenloci) of PM degrees rotates each
point on the Nyquist eigenloci resulting in a rotation of the
entire eigenloci through an angle of PM degrees around the
—1 point. With the nominal system being stable, such a
rotation results in the Nyquist eigenloci passing through the
—1 point leading to sustained oscillations. Instability will
result with any additional phase perturbation. The additive
complex equal diagonal perturbation of A = o will also
result in the eigeloci of (L(s) + A) passing through the
—1 point. Hence any larger additive complex equal diagonal
perturbation will drive the system unstable. We can see that
as follows. Compute an eigenvector (spectral) decomposition
of KL(jw) at each frequency w

KL(jw) = V(jw)A(jw)V ' (jw),

where the columns of V (s) are the eigenvectors of K L(jw)
and the eigenvalues are

A(]w) = dlag{)‘l(]w)a)‘Q(]w)v ,Am(]W)}, (15)

where the \;(s) are the eigenvalues and are assumed to be
distinct for simplicity. Now consider forming the additive
perturbation matrix

A= -V (jw) ol V' (jwr), (16)

with a chosen according to Eq. (12) then K L(jw) + A will
have an eigenvalue at —1, hence the Nyquist eigenloci will go
through the —1 point and the system will go unstable for any
larger perturbation than A. If the eigenvalues are repeated,
we compute the Jordan form and the same reasoning still
holds. [ ]

It is known that the frequency (ws) at which the vector
margin is computed for the SISO case corresponds to the
peak value of the sensitivity function:

jof = [SG7. = (nf 1SG)l)

(14)

(@(S(ws) ™

a7
However, it is interesting to observe from our examples that
this is generally not true in the MIMO case.

IV. EXAMPLES

We will now illustrate the above ideas by applying them
to several examples. Example 1 [7]: Consider the system

1 s—1 S

L(s) = .
) = TG e+2) [ 6 s—2 }
The system has poles at —1, —2, and transmission zeros at
—1, and —2. The eigenloci of L(s) are given by

a(s) = 255 + 75s + 50,  b(s) = —40s + 60,

(18)

0

19)

and results in the two eigenvalues,
2 (=3 +2s+ (1 —24s)/2)

Mls) = 3 (21 35+ 2) ’
 2(3—2s+ (1 —24s5)'/2)
Aa(s) = 5 (s2+3s+2)
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Fig. 2. Multivariable Nyquist eigenloci.

Note that these are not rational functions of s. The eigenloci
is plotted in Figure 2 using the nygmimo script from
MATLAB Central. From the plot we see that for stability
we must have

1 1 1
—00< —— < —-08,-04 < -— <0,0.533 < —— < oc.

K K K
(20)
The intersection of these inequalities leads to
—1.8762 < K < 1.25, (21)
and
K > 25, (22)

so GM,, = 1.25. This is a conditionally stable system in that
instability results if the nominal gain (Ko, = 1) is lowered
or raised and is very common in multivariable systems.
Hence it will have multiple values for GM as seen above.
From the plot we see that a circle with unit radius centered
at the origin crosses the Nyquist eigenloci at —0.7619 +
70.5873 corresponding to w = 0.2215 rad/sec. This is where
[A2(jw)| = 1 and results in the multivariable phase margin
of PM = +37.62°. The point of the closest approach of
the Nyquist eigenloci to the —1 point is —0.8. Therefore
the minimum additive perturbation that drives the system
unstable is « Iy = —0.2 5. Note that & = —1 — A\2(j0) and
in this case, the frequency for the closest approach to the
—1 point (w = 0 rad/sec) does coincide with the frequency
where the maximum singular value of the sensitivity function
is a maximum (ws = 0 rad/sec).

We now compare the norm of the additive perturbation
found above (||aI||2) with the unstructured additive stability
margin of [11]. Figure 3 shows a comparison of the two. We
see that the complex margin has a larger magnitude at low
frequencies. Next we compare the associated multiplicative
perturbation with the unstructured multiplicative stability
margin of [11] as shown in Figure 4. We again see that the
complex margin has a higher magnitude at low frequencies.

Example 2 [8]: Consider the model of the laboratory RTP
system [8] where

x = Ax + Bu,

y = Cx + Du. (23)
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Fig. 4. Comparison of stability margins for multiplicative perturbation.

The three open-loop poles are located at —0.0527, —0.0863,
and —0.1482 and there are no transmission zeros. The loop
gain matrix is

L(s) =C(sI—A)"'B +D. (24)

The eigenloci plot is shown in Figure 5 and consists of three
circles. It is interesting to notice the apparent “jump” in
the three eigenloci circles at the frequency of w = 0.14
rad/sec. This can be explained if we plot the eigenloci vs.
frequency. From such a plot we see that the first eigenvalue
shown in blue switches order with the third in red. So indeed
there is no discontinuity in the eigenloci curves and simply
a reordering of the eigenvalues is occurring. From Figure 5
we see that for stability we must have

1
— —-— <0 d ——=>762 25
%0 < -7 <0, an %> (25)
The intersection of these inequalities leads to
K > —0.1312. (26)

From the plot we see that a circle with unit radius centered
at the origin crosses the Nyquist loci at +0.0635 =+ 51 corre-
sponding to w = 0.3746 rad/sec. This is where | A3 (jw)| =1
and this results in the multivariable phase margin of PM
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Fig. 6. Nyquist eigenloci for RTP example with w values.

= 193.63°. The point of the closest approach of the Nyquist
loci to the —1 point is the origin. Therefore the minimum
additive perturbation that drives the system unstable is o I3 =
—I3. Note that &« = —1 — A\1(jo0) and the frequency for the
closest approach to the —1 point (w = oo rad/sec) does not
coincide with the frequency where the maximum singular
value of the sensitivity function is a maximum (ws = 1
rad/sec) as shown in Figure 6.

We now compare the norm of the additive perturbation
found above (||al3]||2) with the unstructured additive stability
margin of [11]. Figure 7 shows a comparison of the two.
We see that the complex margin is lower in norm at low
frequencies and comparable to the unstructured additive
margin at high frequencies. Next we compare the associated
multiplicative perturbation with the unstructured multiplica-
tive stability margin of [11] as shown in Figure 8. We
see that the complex margin has a higher magnitude at all
frequencies.

To match the experimental data, we found out that the
actual lamps provide 30% more power than we had initially

modeled [6]. We may then form the scaling matrix
L, = diag[ 1.3 1.3 1.3 ] , 27

and recompute the robustness metrics with the new (scaled)
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Fig. 7. Comparison of stability margins for additive perturbation.
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Fig. 8. Comparison of stability margins for multiplicative perturbation.

loop gain matrix
(28)

From the scaled eigenloci plot we find that for stability we
must have

1
—— >9.91 29
% ; (29)
that leads to

K > —0.1009, (30)

as expected.
Example 3 [12, 13]: Consider the drone lateral attitude
control system

x = Ax + Bu, y = Cx + Du, 3D

that has poles at —0.0360, 0.1884471.0511, —3.2503, —20,
—20 with two poles in the RHP, and transmission zeros at 0,
0, and —0.0671. Note that the system has an uncontrollable
mode at the origin. The loop gain matrix is

L(s) =C(sI— A)"'B+D. (32)

The eigenloci plot is shown in Figures 9 and has a rather
complicated shape. Since the system has two open-loop poles
in the RHP, P = 2 and Z = P + N. For stability we need
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Fig. 10. Nyquist eigenloci for drone example with w values.

Z = 0, so that N = —2. From the plot we see that for
stability we must have
1 1
e > —1.86, and — T < —0.0225. (33)
The intersection of these inequalities leads to
0.5376 < K < 44.44, (34)

so GM, 44.44 and GMgy 0.5376. We see that a
circle with unit radius centered at the origin crosses the
Nyquist eigenloci plot at —0.7778 + §0.6190 corresponding
to w = 1.5783 rad/sec. This is where |A2(jw)| = 1 and
results in the multivariable phase margin of PM = +38.5°.
The point of the closest approach of the Nyquist loci to the
—1 point is —1 — 0.62575. Therefore the minimum complex
additive perturbation that drives the system unstable is o Iy =
+0.62575 I5. Note that « = —1—\5(j1.4526). The frequency
for the closest approach to the —1 point (w = 1.4526 rad/sec)
does not coincide with the frequency where the maximum
singular value of the sensitivity function occurs (ws = 1.0915
rad/sec), see Figure 10.

In contrast, the use of sensitivity and complementary sen-
sitivity functions yields very conservative answers. The PM
of 13.1° to 14.2° is computed. With proper scaling to reduce
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Fig. 12. Comparison of stability margins for multiplicative perturbation.

conservatism the answers are improved to 20.4° to 26.1°,
far short of the exact answer obtained above. Similarly, the
GM margin computations are also very conservative. We find
that GMy = 0.7720, GM,, = 1.228, and GMy = 0.8035,
GM,, = 1.3335. With proper scaling these answers can be
made less conservative GMy = 0.645, GM, = 1.35 and
GM4 = 0.6918, GM,, = 1.8197. However, even the answers
with scaling are still very conservative as compared to the
exact answers obtained above.

We now compare the norm of the additive perturbation
found above (||alz||2) with the unstructured additive stability
margin of [11]. Figure 11 shows a comparison of the two.
We see that the complex margin has a higher magnitude
at low frequencies and a lower magnitude at high frequen-
cies as compared to the unstructured perturbation. Next we
compare the associated multiplicative perturbation with the
unstructured multiplicative stability margin of [11] as shown
in Figure 12. We see that the complex margin has a higher
magnitude at all frequencies.

V. SUMMARY & CONCLUSIONS

The multivariable Nyquist eigenloci present a much richer
family of plane curves as compared to the SISO case [2].
We have shown how to readily compute the exact values of
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the GM, PM, and the complex margin (CM) directly from
the multivariable Nyquist eigenloci. This approach dismisses
the computation of GM and PM from singular value plots of
the sensitivity and complementary sensitivity functions that
are generally very conservative. The exact equal diagonal
complex additive perturbation that drives the system unstable
can be computed directly from the complex margin. The ef-
fectiveness of our approach was demonstrated by application
to several examples from process and aerospace control. Our
approach needs to be used in combination with other more
sophisticated robustness analysis approaches such as p, ky,
for a comprehensive robustness analysis.
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