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Overview

Models used for digital twins (DT).

How we use fast, physics-based, models at SC.
How SC’s fast models may be used in DTs.
Examples:

o RTP (generic model with animation of sim results).

o Etch subsystem models intended for process monitoring.

Comments and questions.
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Digital Twin

(O The standards document on digital twin framework for manufacturing (ISO 23247*) defines a
digital twin (DT) as a “fit for purpose digital representation of an observable manufacturing
element with synchronization between the element and its digital representation”.

O For this talk, we define DT in simpler

. . = Sensor Data
terms as a purpose-drlven dynamlc

= Control
model of a wafer processing system Signals
with predictive capabilities: = oo
. . . o Improved performance
o A DT simulation runs faster than real time Input Running in parallel Increased Up-time
and describes the system’s change in Information Cost Savings
behavior with time with acceptable (Recipe, etc.)
accuracy. e = Predicted

outputs

o DT is dynamically updated with sensor
data.

o DT is not quite a digital replica of the
system. Outputs are probabilistic, not

.. *1SO 23247-1: Automation Systems and Integration - Digital Twin Framework for
deterministic.

Manufacturing — Part 1: Overview and general principles. International Organization
for Standardization, Geneva, Switzerland (2021).
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Applications in the Semiconductor Industry

Digital Twins find use in high-value or safety-critical applications.

Control & Diagnostics Prognostic & Monitoring

= Process control. Predictive maintenance.

= Process optimization. = Lifetime prediction.

= System (chamber) matching. = Performance assurance.

= Fault diagnostics. = Assembly verification.

= Virtual sensing. = Supply chain monitoring through

model linking.
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Dynamic Process Models for DT

U

A key component of DT is dynamic process model that has predictive capability.

U

Underlying physics governed by sets of coupled, nonlinear PDE’s.

(

High-fidelity discretized physics-based model typically consist of hundreds of
thousands or even millions of ODE'’s:

o too computationally intensive to simulate in real time.
o uncertain values of physical parameters.

O DT’s need models that:
o Run faster than real time.
o Predict key states with sufficient accuracy.
o May have parameters that can be tuned continually based on sensor data.
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Developing Fast, Low-Order Dynamic Models

J Reduced-order versions of first-principles, high-order models developed using
various techniques:

o Galerkin.
o Aggregation.
o Balanced Realization.
o Proper Orthogonal Decomposition (POD).
o Krylow.
[ Combination of first-principles and phenomenological models:

o data-based models (grey box models)
o machine learning, e.g., deep neural networks (DNN).
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SC’s Low-Order Model Development for Semiconductor Manufacturing

d SC has developed a wide range of low-order models of subsystems and
components of wafer processing equipment for over 25 years.
o “Control relevant” models that run sims faster than real time.
o Physics-based and have adjustable parameters.
o Implemented in ANSI C.
o Successfully incorporated in our commercial software products.

L SC uses these low order models for:
o Design of real-time feedback or feedforward control.
Offset tuning.
Evaluating closed-loop performance.
Developing virtual sensors.

o O O O

Health monitoring.
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A Digital Twin for Rapid Thermal Processing (RTP)

= Pyrometer Data
= lamp
commands

Input
Information
(Recipe, etc.)

Real time

Running in parallel

essss—) " Optimize film Quality
= Lamp failure detection
= Predictive maintenance
= Optimize control based on
emissivity, pattern detection

A Soak (250°C—1200°C)

Cooldown

(25-250°C/s)

time
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A Generic RTP System

Lamp voltage
Commands, V(t) .

U | An Axisymmetric model with 5 lamps and 5 temperature sensors

| | | | |
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Window Lamp radiation heats
o guartz window and wafer
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E Wafer Edge ring
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' » Sensor
Output (5)
Water-cooled walls

Radiation heat exchange
| between all component

: surfaces.
oT
mcy ot - Qradiation + Qconduction + Qconvection

Dominant Important Minor
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Band 1 (A<3.705um)

Heat Transfer Model for RTP

Since radiative transfer is dominant, it is
important to model radiative properties
with sufficient accuracy: wavelength-
dependence, specular/diffuse.

Radiative exchange factors computed using
Monte-Carlo method.

Conduction is important — temperature-
dependent thermal properties needed.

Convection is least important -- incorporated
using heat transfer coefficients.

Radiative Properties
Band 2 (A>3.705um)

Component Eeif n k Component €t n k
Lamp 0.3 Lamp 0.1

Window 0 1.5 0 Window 0.19 2.55 0.01
Wafer 0.7 3.5 0.01 Wafer 0.7 3.5 0.01
Guard Ring 0.7 3.5 0.01 Guard Ring 0.7 3.5 0.01
Walls 0.3 diffuse Walls 0.3 diffuse
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91-state model runs 120-second simulation

in about a second.
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Comparison of closed-loop
simulation results with data
from a commercial RTP
system.*

* A. Emami-Naeini, et al., ‘Modeling and
Control of Distributed Thermal Systems’,
IEEE Trans. Control Technology, Vol. 11,
No. 5, pp. 668-683, 2003.
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Closed-Loop RTP Response
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Components of a Digital Twin for Plasma Etch System

Plasma Power

RF Match

RTD Measurements
Heater Commands

Input Real time
Information L
(Recipe, etc.) Running in
parallel
——) = Maximum performance: CD uniformity.
= Virtual Sensing of Wafer Temperature
Map.
= Predictive Maintenance.

Subsystem models that may be used in a DT for etch systems:
o Plasma model.
o Chamber Pressure Model.
o ESC Temperature Model.

o RF Impedance Model.
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Fast Subsystem Models for Plasma Etch Chamber
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Developed physics-based low-order
models of etch chamber subsystems
(less than 10 states/parameters each).

Models calibrated with process data.
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Updating Component Models with Data

ESC
Data —| Temperature |_5 . o Model parameters values restricted to

Model g a pre-determined range in a properly
operating system.

* |t is possible to compress several

IC)hamber process variables into relatively few

r r i i

Data —> essuré  [=—> parametersp model parameters in a physics-based
Model - model

* A reduced range of variation of
parameter values indicates an

Data —» RFMatch 5 parametersz improved physics-based model.
Model
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Chamber Pressure Model

From RF

P
Power Supply RF \ RF Power Coils

9000000 0000000
Pressure
Sensor
m, =P
From : Mean chamber
MFC's P pressure
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» 1 Moles of species i
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A » Control
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. Exhaust
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’ System
P=s [ — Ap@)
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Mean molecular weight Assume that this MFC command is constant
('can change with RF power)  qyring a given process step.
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Plasma Power
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ESC Temperature Model

y=T-T
1= —011y1 + 02101 +031(y2 — y1) + 04,1qrF
—01,2y2 + 02 2uz + 03 2(y1 — y2) + 04 2qrF
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RF Impedance Model

RF Power Supply Zr, =0.5+90j Q
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Example Datalog Variables (model same for all power steps)
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Combining Physics-based Models with Data-based Models

[

Physics-based Models

= Pros:
Provides insights into the systems’ behavior.

= Cons:
Predictive capability is limited by unknown or
unmodeled physics.

~N

Data-driven Models (e.g., DNNs)

= Pros:
Suitable for discovering representation of
complex functions without a priori knowledge.

= Cons:
- Lack of interpretability, output reliability.
- Requires huge amount of training dataset.

. J . /
( . )
PAI Approach (Physics + Al)*

= Deep neural networks (DNNs) are trained with dataset generated from physics-based models with structured
uncertainty model sets. The DNNs estimate both model and physical variables.
= Dynamic feedback loop with robust control uses the DNNs outputs to optimize system performance. If the level
L of model uncertainties exceeds a certain bound, the DNNs must be retrained. )

* D. De Bruyker, R. L. Kosut, R. Valdez, S. Haymes, L. Schoeling, M. Petro, D. Weiner, A. Joseph, J. K. Lee, A. Emami-Naeini, J. L. Ebert,
and S. Ghosal, Improving Recovery in the Yates Field Using Dynamic Feedback Loop based on Physics-Informed Artificial Intelligence,
Proceedings of SPE Improved Oil Recovery Conference, Society of Petroleum Engineers, August 2020.
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Digital Twin for Bridge Health Monitoring (DoT-funded Program)

Computer vision
techniques to extract
deflection signals

Deflection THs

AR

@ High-resolution camera
system Online Portal

@ Regular camera system

(tripod or drone mounted) ;. .ﬂ
On-site laptop

Object tracking

(Integrating Data with Model)

Type Detection

Online Portal
Bayesian FE Model Updating

| v

Stochastic

Mechanics-based FE Model

Filtering

L

I Predictions

L+

Vehicle
Locations

Measurements

@) Office/server computer
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* Structural Monitoring

+ Damage Identification

* Load rating

* Post-event Assessment

Digital Twin Online Portal to Share Information with
Stakeholders

SC SOLUTIONS 20



Summary

0 Key to implementing DT technology: fast yet accurate dynamic models.

O Fast models are often based on low-order versions of high-fidelity physics-based
models.

O Fast, physics-based model may need to be supplemented with other types of
models: gray-box, machine learning.

d These fast models that may currently have different uses but can be brought
together for successful implementation of DT's.
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