Fast, Physics-based Models for Real-time Process Control And Monitoring

Sarbajit Ghosal, Jon Ebert, Narasimha Acharya, Dick de Roover, La Moyne Porter, Abbas Emami-Naeni

> SC Solutions, Inc. 1261 Oakmead Pkwy, Sunnyvale, CA 94085 scsolutions.com/controls/

Semiconductor Digital Twin Workshop, SEMI December 4-5, 2023

SC SOLUTI

Overview

- □ Models used for digital twins (DT).
- □ How we use fast, physics-based, models at SC.
- □ How SC's fast models may be used in DTs.
- **Examples:**
 - RTP (generic model with animation of sim results).
 - Etch subsystem models intended for process monitoring.
- **Comments and questions.**

Digital Twin

- □ The standards document on digital twin framework for manufacturing (ISO 23247*) defines a digital twin (DT) as a "fit for purpose digital representation of an observable manufacturing element with synchronization between the element and its digital representation".
 - For this talk, we define DT in simpler terms as a purpose-driven dynamic model of a wafer processing system with predictive capabilities:
 - A DT simulation runs faster than real time and describes the system's change in behavior with time with acceptable accuracy.
 - DT is dynamically updated with sensor data.
 - DT is not quite a digital replica of the system. Outputs are probabilistic, not deterministic.

* ISO 23247-1: Automation Systems and Integration - Digital Twin Framework for Manufacturing – Part 1: Overview and general principles. International Organization for Standardization, Geneva, Switzerland (2021).

Applications in the Semiconductor Industry

Digital Twins find use in high-value or safety-critical applications.

Control & Diagnostics

- Process control.
- Process optimization.
- System (chamber) matching.
- Fault diagnostics.
- Virtual sensing.

Prognostic & Monitoring

- Predictive maintenance.
- Lifetime prediction.
- Performance assurance.
- Assembly verification.
- Supply chain monitoring through model linking.

Dynamic Process Models for DT

- A key component of DT is dynamic process model that has predictive capability.
- Underlying physics governed by sets of coupled, nonlinear PDE's.
- High-fidelity discretized physics-based model typically consist of hundreds of thousands or even millions of ODE's:
 - o too computationally intensive to simulate in real time.
 - o uncertain values of physical parameters.

DT's need models that:

- Run faster than real time.
- Predict key states with sufficient accuracy.
- May have parameters that can be tuned continually based on sensor data.

Developing Fast, Low-Order Dynamic Models

- Reduced-order versions of first-principles, high-order models developed using various techniques:
 - Galerkin.
 - Aggregation.
 - Balanced Realization.
 - Proper Orthogonal Decomposition (POD).
 - o Krylov.

Combination of first-principles and phenomenological models:

- data-based models (grey box models)
- machine learning, e.g., deep neural networks (DNN).

SC's Low-Order Model Development for Semiconductor Manufacturing

SC SOLUTI

- SC has developed a wide range of low-order models of subsystems and components of wafer processing equipment for over 25 years.
 - o "Control relevant" models that run sims faster than real time.
 - Physics-based and have adjustable parameters.
 - Implemented in ANSI C.
 - Successfully incorporated in our commercial software products.

SC uses these low order models for:

- Design of real-time feedback or feedforward control.
- Offset tuning.
- Evaluating closed-loop performance.
- Developing virtual sensors.
- Health monitoring.

A Digital Twin for Rapid Thermal Processing (RTP)

December 4-5, 2023

A Generic RTP System

SC SOLUTIONS

9

Heat Transfer Model for RTP

- Since radiative transfer is dominant, it is important to model radiative properties with sufficient accuracy: wavelengthdependence, specular/diffuse.
- Radiative exchange factors computed using Monte-Carlo method.
- Conduction is important temperaturedependent thermal properties needed.
- Convection is least important -- incorporated using heat transfer coefficients.

Radiative Properties							
Band 1 (λ<3.705μm)				Band 2 (λ>3.7	Band 2 (λ>3.705μm)		
Component	ε _{eff}	n	k	Component	ε _{eff}	n	k
Lamp	0.3			Lamp	0.1		
Window	0	1.5	0	Window	0.19	2.55	0.01
Wafer	0.7	3.5	0.01	Wafer	0.7	3.5	0.01
Guard Ring	0.7	3.5	0.01	Guard Ring	0.7	3.5	0.01
Walls	0.3	diffuse		Walls	0.3	diffuse	

91-state model runs 120-second simulation in about a second.

SC SOLUTIONS 10

Closed-Loop RTP Response

Comparison of closed-loop simulation results with data from a commercial RTP system.*

* A. Emami-Naeini, et al., 'Modeling and Control of Distributed Thermal Systems', IEEE Trans. Control Technology, Vol. 11, No. 5, pp. 668-683, 2003.

Components of a Digital Twin for Plasma Etch System

SC SOLUTIONS

12

Subsystem models that may be used in a DT for etch systems:

- o Plasma model.
- Chamber Pressure Model.
- ESC Temperature Model.
- RF Impedance Model.

Fast Subsystem Models for Plasma Etch Chamber

- Developed physics-based low-order models of etch chamber subsystems (less than 10 states/parameters each).
- Models calibrated with process data.

Updating Component Models with Data

- Model parameters values restricted to a pre-determined range in a properly operating system.
- It is possible to compress several process variables into relatively few model parameters in a physics-based model.
- A reduced range of variation of parameter values indicates an improved physics-based model.

Chamber Pressure Model

SC SOLUTIONS 15

ESC Temperature Model

RF Impedance Model

SC SOLUTIONS 17

Example Datalog Variables (model same for all power steps)

December 4-5, 2023

Combining Physics-based Models with Data-based Models

Physics-based Models

Pros:

Provides insights into the systems' behavior.

Cons:

Predictive capability is limited by unknown or unmodeled physics.

Data-driven Models (e.g., DNNs)

Pros:

Suitable for discovering representation of complex functions without a priori knowledge.

Cons:

- Lack of interpretability, output reliability.
- Requires huge amount of training dataset.

PAI Approach (Physics + AI)*

- Deep neural networks (DNNs) are trained with dataset generated from physics-based models with structured uncertainty model sets. The DNNs estimate both model and physical variables.
- Dynamic feedback loop with robust control uses the DNNs outputs to optimize system performance. If the level of model uncertainties exceeds a certain bound, the DNNs must be retrained.

* D. De Bruyker, R. L. Kosut, R. Valdez, S. Haymes, L. Schoeling, M. Petro, D. Weiner, A. Joseph, J. K. Lee, A. Emami-Naeini, J. L. Ebert, and S. Ghosal, Improving Recovery in the Yates Field Using Dynamic Feedback Loop based on Physics-Informed Artificial Intelligence, Proceedings of SPE Improved Oil Recovery Conference, Society of Petroleum Engineers, August 2020.

December 4-5, 2023

Digital Twin for Bridge Health Monitoring (DoT-funded Program)

SC SOLUTIONS 20

Summary

- □ Key to implementing DT technology: fast yet accurate dynamic models.
- Fast models are often based on low-order versions of high-fidelity physics-based models.
- Fast, physics-based model may need to be supplemented with other types of models: gray-box, machine learning.
- These fast models that may currently have different uses but can be brought together for successful implementation of DT's.

Thank You

SC SOLUTIONS

Value Through Innovation