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Overview

❑ Models used for digital twins (DT).

❑ How we use fast, physics-based, models at SC.

❑ How SC’s fast models may be used in DTs.

❑ Examples:

o RTP (generic model with animation of sim results).

o Etch subsystem models intended for process monitoring.

❑ Comments and questions.
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Digital Twin

❑ For this talk, we define DT in simpler 
terms as a purpose-driven dynamic 
model of a wafer processing system 
with predictive capabilities:

o A DT simulation runs faster than real time 
and describes the system’s change in 
behavior with time with acceptable 
accuracy.

o DT is dynamically updated with sensor 
data. 

o DT is not quite a digital replica of the 
system. Outputs are probabilistic, not 
deterministic.

❑ The standards document on digital twin framework for manufacturing (ISO 23247*) defines a 
digital twin (DT) as a “fit for purpose digital representation of an observable manufacturing 
element with synchronization between the element and its digital representation”.

* ISO 23247-1: Automation Systems and Integration - Digital Twin Framework for 

Manufacturing – Part 1: Overview and general principles. International Organization 

for Standardization, Geneva, Switzerland (2021).
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Applications in the Semiconductor Industry

Digital Twins find use in high-value or safety-critical applications. 

▪ Predictive maintenance.

▪ Lifetime prediction.

▪ Performance assurance.

▪ Assembly verification.

▪ Supply chain monitoring through 
model linking.

Prognostic & Monitoring

▪ Process control.

▪ Process optimization.

▪ System (chamber) matching.

▪ Fault diagnostics.

▪ Virtual sensing.

Control & Diagnostics
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Dynamic Process Models for DT

❑ A key component of DT is dynamic process model that has predictive capability. 

❑ Underlying physics governed by sets of coupled, nonlinear PDE’s.

❑ High-fidelity discretized physics-based model typically consist of hundreds of 
thousands or even millions of ODE’s:

o too computationally intensive to simulate in real time.

o uncertain values of physical parameters.

❑ DT’s need models that:

o Run faster than real time.

o Predict key states with sufficient accuracy.

o May have parameters that can be tuned continually based on sensor data.
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Developing Fast, Low-Order Dynamic Models

❑ Reduced-order versions of first-principles, high-order models developed using 
various techniques:

o Galerkin.

o Aggregation.

o Balanced Realization.

o Proper Orthogonal Decomposition (POD).

o Krylov.

❑ Combination of first-principles and phenomenological models:

o data-based models (grey box models)

o machine learning, e.g., deep neural networks (DNN).
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❑ SC has developed a wide range of low-order models of subsystems and 
components of wafer processing equipment for over 25 years.

o “Control relevant” models that run sims faster than real time.

o Physics-based and have adjustable parameters.

o Implemented in ANSI C.

o Successfully incorporated in our commercial software products.

❑ SC uses these low order models for:

o Design of real-time feedback or feedforward control.

o Offset tuning.

o Evaluating closed-loop performance.

o Developing virtual sensors.

o Health monitoring.

SC’s Low-Order Model Development for Semiconductor Manufacturing
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A Digital Twin for Rapid Thermal Processing (RTP)
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A Generic RTP System
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An Axisymmetric model with 5 lamps and 5 temperature sensors
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Heat Transfer Model for RTP

Band 1 (l<3.705mm) Band 2 (l>3.705mm)

Component eeff n k Component eeff n k

Lamp 0.3 Lamp 0.1

Window 0 1.5 0 Window 0.19 2.55 0.01

Wafer 0.7 3.5 0.01 Wafer 0.7 3.5 0.01

Guard Ring 0.7 3.5 0.01 Guard Ring 0.7 3.5 0.01

Walls 0.3 diffuse Walls 0.3 diffuse

Radiative Properties

❑ Since radiative transfer is dominant, it is 
important to model radiative properties 
with sufficient accuracy: wavelength-
dependence, specular/diffuse.

❑ Radiative exchange factors computed using 
Monte-Carlo method.

❑ Conduction is important – temperature-
dependent thermal properties needed.

❑ Convection is least important -- incorporated 
using heat transfer coefficients.

91-state model runs 120-second simulation 
in about a second.
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Simulation Data

* A. Emami-Naeini, et al., ‘Modeling and 
Control of Distributed Thermal Systems’, 
IEEE Trans. Control Technology, Vol. 11, 
No. 5, pp. 668-683, 2003.

Closed-Loop RTP Response

Comparison of closed-loop 
simulation results with data 
from a commercial RTP 
system.*
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Input 
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▪ Maximum performance: CD uniformity.
▪ Virtual Sensing of Wafer Temperature 

Map.
▪ Predictive Maintenance.
▪ …

▪ Plasma Power
▪ RF Match
▪ RTD Measurements 
▪ Heater Commands
▪ … 

Real time

Running in 
parallel

Subsystem models that may be used in a DT for etch systems:

o Plasma model.

o Chamber Pressure Model.

o ESC Temperature Model.

o RF Impedance Model.

Components of a Digital Twin for Plasma Etch System
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Fast Subsystem Models for Plasma Etch Chamber

Temperature Model

Chamber Pressure Model

RF Impedance Model

• Developed physics-based low-order 
models of etch chamber subsystems 
(less than 10 states/parameters each).

• Models calibrated with process data.
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Updating Component Models with Data

ESC 
Temperature

Model
Parameters Ɵ

Chamber          
Pressure
Model

Parameters p

RF Match
Model

Parameters ZData

• Model parameters values restricted to 
a pre-determined range in a properly 
operating system.

• It is possible to compress several 
process variables into relatively few 
model parameters in a physics-based 
model.

• A reduced range of variation of 
parameter values indicates an 
improved physics-based model.
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Chamber Pressure Model
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ESC Temperature Model
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RF Impedance Model
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Example Datalog Variables (model same for all power steps)

RF PowerSeries Cap Shunt Cap Plasma
Imped. 
Model

u1 u2

T1 T2
ESC 

Temp.
Model

Pressure

Valve Position

Chamber 
Pressure 
Model
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Combining Physics-based Models with Data-based Models

Physics-based Models

▪ Pros: 
Provides insights into the systems’ behavior.

▪ Cons: 
Predictive capability is limited by unknown or 
unmodeled physics. 

PAI Approach (Physics + AI)*

▪ Deep neural networks (DNNs) are trained with dataset generated from physics-based models with structured 
uncertainty model sets. The DNNs estimate both model and physical variables. 

▪ Dynamic feedback loop with robust control uses the DNNs outputs to optimize system performance. If the level 
of model uncertainties exceeds a certain bound, the DNNs must be retrained.

Data-driven Models (e.g., DNNs)

▪ Pros: 
Suitable for discovering representation of 
complex functions without a priori knowledge.

▪ Cons: 
- Lack of interpretability, output reliability.
- Requires huge amount of training dataset.

* D. De Bruyker, R. L. Kosut, R. Valdez, S. Haymes, L. Schoeling, M. Petro, D. Weiner, A. Joseph, J. K. Lee, A. Emami-Naeini, J. L. Ebert, 
and S. Ghosal, Improving Recovery in the Yates Field Using Dynamic Feedback Loop based on Physics-Informed Artificial Intelligence, 
Proceedings of SPE Improved Oil Recovery Conference, Society of Petroleum Engineers, August 2020.
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Digital Twin for Bridge Health Monitoring (DoT-funded Program)
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❑ Key to implementing DT technology: fast yet accurate dynamic models.

❑ Fast models are often based on low-order versions of high-fidelity physics-based 
models.

❑ Fast, physics-based model may need to be supplemented with other types of 
models: gray-box, machine learning.

❑ These fast models that may currently have different uses but can be brought 
together for successful implementation of DT’s.

Summary
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SC SOLUTIONS
Value Through Innovation

Thank You
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