

Thermal Model and Control of Metal-Organic Chemical Vapor Deposition Process

Jon L. Ebert, Sarbajit Ghosal, and Narasimha Acharya

SC Solutions, Inc. 1261 Oakmead Pkwy., Sunnyvale, CA 94085.

<u>ile@acsolutions.com</u> https://www.scsolutions.com

October 4-6, 2017

Multi-Quantum Well Light Emitting Diodes (MQW-LED)

S.M. Sze and Kwok K. Ng, LEDs and Lasers, John Wiley & Sons, Inc., 2006.

R. Stevenson, "The LED's Dark Secret," *IEEE Spectrum*, August 2009.

- LEDs used in lighting are Multiple Quantum Well (MQW) devices that are fabricated on sapphire or silicon substrates.
- Several Indium Gallium Nitride (InGaN) quantum wells sandwiched between Gallium Nitride (GaN) quantum barrier layers.
- □ Frequency (color) of emitted light may be tuned from violet to amber by varying relative In/Ga fraction.
- After deposition, wafer diced into small rectangular chips (die), wire bonds (or other electrical leads) are inserted. Phosphor added as suspension or coating for white LEDs.

Metal-Organic Chemical Vapor Deposition (MOCVD) of LEDs

- Wafers (2"-6" diameter) rest in pockets in graphite susceptor (carrier) heated from below.
- Hydrogen carrier gas inflow through showerhead with dilute mixture of metal organic precursors, Tri-Methyl Gallium (TMG) and Tri-Methyl Indium (TMI) at 50-500 torr.
- Reactive gases decompose and deposit thin epitaxial layers (thicknesses range from a few nm to a few μm).

October 4-6, 2017

Cause of Color Variation in LEDs, LED 'binning'

W. E. Quinn, *Driving Down HB-LED Costs*, Final Technical Report in fulfillment of the requirements of Department of Energy Grant DE-EE0003252, 2012.

W. E. Quinn, "Trends in Production Scale MOCVD Systems to Reduce the Cost of Solid State Lighting," Presentation at Semicon West, 2010.

- Process variations have significant impact on color, lumens, and forward voltage of LEDs.
- Color of light emitted by LED is a strong function of the wafer temperature during deposition.
- Despite excellent control of susceptor temperature, light color varies significantly for chips fabricated on same wafer.
- **To address this problem, LED manufacturers group devices into "bins".**
- Each bin spans a range of color temperature, voltage or lumens. Larger bin size means greater variation in light color or output smaller bins have tighter control.
- For continued rapid increase of LED's share of lighting market, it is necessary to significantly reduce, and preferably eliminate, the need for binning LEDs.

What Causes Temperature Variation Across Wafer?

Using this COMSOL model, we show:

- Temperature gradient through wafer thickness causes wafer to bow (edge high).
- Wafer bow causes carrier/wafer gap to vary with radius from center of wafer.
- □ Variable gap size causes in-plane, radial temperature gradient.

October 4-6, 2017

Aixtron (Thomas Swan) 3 x 2" Reactor

3D COMSOL model of one-third of the relevant part of the reactor was developed taking advantage of azimuthal symmetry.

COMSOL Model

- Heat Transfer (with Surface-to-surface Radiation) and Solid Mechanics modules were used. Effect of flow modeled with correlation as explained in next slide.
- Mesh convergence tested for wafer temperature. Coarse mesh used in regions with low temperature gradients.
- Thermal contact between 2" wafer and susceptor modeled as H₂ layer with an additional thin layer bow of 26 μm depth.
- Operating conditions:
 - 800°C nominal wafer temperature.
 - Pressure of 500 Torr.
 - Susceptor rotation rate of 500 RPM.
- FEM model has 81.3K elements, and 135K DoF. Solution time is about an hour.

Surface: Temperature (degC), and Mesh

Correlation for Convective Cooling of Susceptor and Wafer

- Gas flow not solved here because sufficient mesh refinement for flow increase surface number in surface-to-surface radiation which, in turn, greatly increases computation time.
- Instead, a separate 2D axisymmetric COMSOL model was used to develop heat transfer correlations for stagnation flow heat transfer from a rotating susceptor over a range of operating conditions as shown below.
- □ The resulting correlation for heat transfer coefficient as function of temperature was used in the COMSOL model.

$$h = kA(T) \sqrt{\frac{\rho\omega}{\mu}} \qquad A(T) = (0.29815 + T^*8E-5), \text{ where } T \text{ is in } K$$

25 500°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

26 500°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

27 50°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

28 500°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

29 500°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

29 500°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

29 500°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

29 500°C: Nu=0.36 Re^{1/2} 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

20 6 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

20 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

20 750°C: Nu=0.38 Re^{1/2} 1000°C: Nu=0.40 Re^{1/2}

20 8 density

20 8 rotation rate, rad/s

20 8 Re susceptor radius

20 8 rotation rate, rad/s

20 8 Re^{1/2} Nu Low FFM 1000C Med alm vary per H 1000C Med alm vary per H 100°C Med alm vary per H 10°C Med alm vary

October 4-6, 2017

Re (based on properties at susceptor surface T)

Nu (at susceptor surface T)

Heaters

- 7 heater coils grouped into 3 zones (Zone 1: innermost two coils, Zone 2: middle 4, and Zone 3: outermost coil).
- **Each power zone coils vertically separated by ceramic plates.**
- Baseline powers are : 48 W, 199 W, 823 W (divided among coils proportionate to coil volume).

Susceptor Temperatures

- Heated by radiation (and some conduction through nitrogen) from heaters.
- Loses heat radiatively to the surroundings walls and by convection to the process gases (modeled using heat transfer coefficient correlation).
- Maximum susceptor temperature is about 1025°C.

Surface: Temperature (degC), and Mesh

October 4-6, 2017

Wafer Bow

- Lower wafer surface is about 3°C hotter than top.
- **Resulting differential thermal expansion results in concave bow.**
- **This bow leads to the wafer top surface temperature non-uniformity.**

Vertical axis magnified for clarity.

Wafer Temperature Gains

Gains computed for each zone (units of °C/W).

October 4-6, 2017

Best Wafer Temperature Uniformity

Temperature range with optimal power settings is less than 4°C on wafer top.
 Azimuthal asymmetry in wafer temperature non-uniformity cannot be corrected by heater power adjustments.

z dimension scaled up by factor of five.

October 4-6, 2017

Temperature Binning

- Mesh in COMSOL model specifies temperatures at 618 points on top of wafer.
- These temperatures were binned into 7 bins that are 1°C in width.
- The challenge is to reduce the number of bins to one or two, i.e., within-wafer temperature nonuniformity to within 2°C or less.

Summary and Acknowledgement

- COMSOL thermal model of MOCVD confirms that wafer bowing contributes substantially to within-wafer temperature nonuniformity.
- In the next step, we will validate model with experimental data.

The work was funded by the Department of Energy's Small Business Innovation Research (SBIR) Phase I program (Contract # DE-SC0017093). The authors would like to thank Professor Christian Wetzel of Rensselaer Polytechnic Institute for reactor information and very useful discussions.

October 4-6, 2017