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Abstract

Input command shaping for temperature control of fast-ramp RTP
systems is investigated from an open-loop-input point of view, i.e.,
for a given desired temperature recipe a set of lamp command pro-
files is determined such that the resulting set of measured temper-
atures approaches the desired recipe as closely as possible. Be-
cause of the inherent nonlinear behavior of RTP systems, a com-
mand shaping method has been developed that iteratively modifies
the optimal linear commands to compensate for the nonlineari-
ties. This method, which has been derived from Iterative Learning
Control (ILC), shapes the input commands iteratively so as to min-
imize the two-norm between a desired output trajectory and the
simulated current output trajectory. The technique is applicable
to MIMO systems and can handle constraints on the input com-
mands. Application of this method to a fast-ramp oxidation (RTO)
and fast-ramp spike anneal(RTA) process for a model of a generic
RTP system demonstrates its usefulness for nonlinear systems.

1 Introduction

Frequently, conventional LTI-based command shaping tech-
niques fail when applied to a system with substantial nonlin-
earities, such as saturation or trajectory-dependent dynam-
ics. This paper presents a method for command shaping of
nonlinear systems using Iterative Learning Control (ILC),
see references [12-14] for an overview of ILC. By devel-
oping a convergent update law, the optimal linear solution
is iteratively modified to compensate for the nonlinearities.
The algorithm iteratively shapes the input commands so as
to minimize the two-norm between a desired output trajec-
tory and the simulated output trajectory.

We will use this method to trade-off performance spec-
ifications for fast-ramp Rapid Thermal Processing (RTP)
systems. Fast-ramp RTP systems continue to be of inter-
est to the industry for growing thin gate oxides, spike an-
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neals, as well as throughput considerations. From a control
point of view, fast ramping is a completely new challenge
with issues that have not been encountered before: dynamic
behavior—which did not play a role in tracking ramps with
low ramp rates—can seriously limit the achievable perfor-
mance when tracking ramps with high ramp rates. Impor-
tant issues to deal with are: overshoot, actuator saturation,
wafer temperature non-uniformity, and robustness against
high-frequency modeling errors and disturbances.

In a previous paper we considered the limitations of feed-
back control in tracking fast ramps for a generic RTP sys-
tem, see [2]. Measurement noise and plant disturbances
posed serious limitations on the achievable performance
with feedback. Performance improvement was obtained
by adding feedforward control and pre-filter to the control
scheme. This paper will address the fundamental control
limitations of tracking fast ramps for a generic RTP system
from an open-loop-input point of view. The thermal dynam-
ics of the system do not allow tracking fast ramps without
error if other performance constraints, such as actuator sat-
uration and limited temperature overshoot, have to be met.
Typically, trade-offs have to be made between the other re-
quirements and/or constraints.

In a recent paper, we investigated trade-offs in temperature
control of fast-ramp RTP systems from anoptimal-control-
input point of view for the generic RTP system, see refer-
ence [3]. It was shown that exact tracking of ramps with
rates higher than 75Æ C/sec violated the actuator limitations.
Using the formulation of an optimal trajectory (ramp) re-
design problem according to the technique described in [4,
5], it was shown that ramp rates of 150Æ C/sec could be
tracked that did not violate the actuator constraints and lim-
ited overshoot and steady-state tracking error to 1Æ C. Track-
ing of ramps with higher ramp rates with less than 1Æ C over-
shoot and steady-state tracking error, could only be achieved
if the lamp inputs were redesigned to allow for higher input
power.

The results in [3] were generated with a linear model of
an RTP system. However, actual RTP systems are highly



nonlinear because of the significance of thermal radiation
as a mechanism for energy transfer and the large tempera-
ture range of operation. In this paper we will investigate the
trade-offs for a nonlinear model of a generic RTP system.
For this purpose, Iterative Learning Control (ILC) is used to
iteratively determine the open-loop lamp power signals that
drive the measured RTP outputs along a desired tempera-
ture trajectory, see references [12-14]. Using ILC we will
determine lamp power inputs both for oxidation (RTO) and
annealing (RTA) recipes.

The outline of the paper is as follows. Section 2 describes
the RTP plant properties and the derivation of a linear model
from a nonlinear model of the generic RTP system. Tem-
perature control performance requirements are described in
Section 3. Section 4 summarizes Iterative Learning Control
and how it can be applied to command shaping for non-
linear systems. Section 5 discusses command shaping of
fast-ramp oxidation processes, while Section 6 investigates
command shaping for fast-ramp spike anneals. Section 7 is
conclusions.

2 RTP Plant and Model

The simulation results in this paper are based on a previ-
ously derived physical model of the generic RTP system [6-
11]. The generic RTP system geometry is shown in Figure
1, which is representative of most modern commercial RTP
systems. The system consists of five independently pow-
ered lamps near the top wall that form axi-symmetric rings
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Figure 1: Schematic of the Generic RTP Chamber.

at radii r1,. . . , r5. The walls of the chamber are highly re-
flective (95%) and water-cooled. A thick quartz window
(6.35 mm) and a thinner quartz shower-head (1mm) trans-
mit radiation from the hot lamps at wavelengths shorter than
approximately 4µm, but are opaque to radiation at longer
wavelength. The silicon wafer and guard ring are heated
by this short wavelength lamp radiation. A physical model

of this nonlinear system was constructed that predicts the
dynamic temperature response. Details of this model are
described in Ebert et al. [6].

Due to the significance of thermal radiation as a mechanism
for transfer of energy in RTP systems and the large tempera-
ture range of operation, the system’s behavior is highly non-
linear. In addition, these systems are multivariable having
multiple temperature sensors (outputs) and multiple lamp
groups for actuation (inputs). The generic RTP system has
five inputs and five outputs. The individual channels are
strongly coupled, i.e., each input has a relatively significant
influence on each of the five outputs.

The dynamic range of an RTP system is fairly large due to
the large variation in thermal mass and heat transfer of the
various components. The lamp filaments are the smallest
elements, and hence the fastest. On the other hand, a quartz
window has a relatively large thermal mass and is cooled
rather poorly, and hence is relatively slow.

For the design of an Iterative Learning Controller later on in
this paper a linear model is needed, which will be derived
from the simplified nonlinear physical model of the generic
RTP chamber [6]. Let the simplified nonlinear model be
given by:

ẋ = f (x)+B1u
y = h(x):

Here f (x) andh(x) are nonlinear functions of the statex, and
y are the sensor outputs. By selecting a suitable linearization
(operating) point(xo;uo) a linear model can be derived by
computing:

A =
∂ f
∂x

����
xo

B = B1

C =
∂h
∂x

����
xo

resulting in the linear model:
�

˙̃x = Ax̃+Bũ
ỹ = Cx̃

(1)

An important issue in the linearization is the selection of the
linearization point (temperature).

3 Performance Requirements

Wafer quality is explicitly determined by the temperature
control performance of the RTP chamber. In this paper we
impose the following requirements on the RTP temperature
control in order to ensure good wafer quality:

� Steady-state tracking error should be less than 1Æ C.



� Overshoot should be less than 1Æ C for temperature
changes up to 600Æ C, ramp-rates up to 250Æ C, and
setpoints up to 1100Æ C.

Furthermore, we deal with the following actuator con-
straints:

� Normalized power is limited to 1 (lamps full on).

� Normalized power cannot be negative (lamps off).

In this paper we will investigate tracking of ramps with rates
50Æ, 150Æ and 250Æ C/sec, respectively, for a temperature
setpoint change from 600Æ C to 1100Æ C.

4 Iterative Learning Control

Consider the configuration depicted in Figure 2. The main
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Figure 2: Blockscheme of Iterative Learning Control for RTP.

idea of iterative learning control is to iterativelyupdate the
signalu, so as todecrease the magnitude of the temperature
tracking errorek, after each cycle of the reference signal
Tre f , see e.g. [12-14]. More formally, letk denote the num-
ber of iterations, then ILC deals with finding an updateU
of the signalu at thekth iteration, based on the temperature
tracking error at thekth iteration, i.e.,

uk+1
(t j) = U(uk

(t j);ek
(t j)); t j 2 [0;TN ]; k 2 N; (2)

such that

lim
k!∞

uk
(t j) = u�(t j) and lim

k!∞
k ek

(t j) k= e�;

with u�(t j) and e� being fixed points, ande� is minimal
over the interval[0;TN ], which is defined as:[0;TN ]

:

=

[t0; t∆T ; : : : ; tN∆T ], ande� is measured in some signal norm
k � k. Obviously, convergence of an ILC scheme to fixed
pointsu� ande�, depends on the choice of the update law
(2); the great body of literature on ILC mainly concerns
‘newly’ proposed update laws. Roughly speaking, for linear
systems two different types of update laws can be distin-
guished: aProportional Integral Derivative (PID)-type of
update law and amodel-based update law. The most gen-
eral PID-type of update law can be found in [12], which
updates the input according to:

uk+1
(t) = uk

(t)+αek
(t)+βėk

(t)+γ
Z

ek
(t)dt: (3)

For this type of “learning” rule, convergence conditions are
derived, so as to obtain the gainsfα;β;γg.

The most general model based update law is proposed in
[13], and reads as follows:

uk+1
(t j) = Q(q)uk

(t j)+L(q)ek
(t j): (4)

Hereq is the forward shift operator defined as:qt j = t j+1 =

t j +∆T , with ∆T being the sampling interval. General con-
vergence conditions on the filtersQ andL are derived, based
on knowledge (i.e., a model) of the system. In fact, update
law (4) can be seen as a generalization of update law (3), by
making specific choices of the filtersQ andL. Hence, we
will only consider learning rule (4).

A general design method for the filtersQ andL can be found
in [14]. Here we choose theL filter equal to the dynamic
inverse of the linear plant model that was derived in Section
2, and theQ filter as a low-pass filter; the cut-off frequency
of the low-pass filter can be used as a design parameter to
trade-off exact tracking vs temperature uniformity, as will
be shown later in this paper.

Henceforth, all simulated lamp power inputs will be deter-
mined by applying a learning iteration such that the dif-
ference between two successive iterations is within a suf-
ficiently small tolerance. A typical learning iteration con-
verges within 10 iterations.

Figure 3 shows such a typical iteration for an oxidation
recipe with ramp-up rate of 250Æ C/sec. Using an optimiza-
tion procedure, we computed the steady-state lamp com-
mands that hold the system temperatures at 600Æ C such
that the simulated measured temperatures start with zero er-
ror. Since theL filter is equal to the dynamic inverse of a
linear plant model—which is acquired at onlyone temper-
ature operating point—the (steady-state) error at iteration 0
is more than 150Æ C, see first row in Figure 3. However, in
the 1st iteration the error has been reduced to less than 40Æ

C (2nd row in Figure 3) and in the 2nd iteration the error
at steady-state is almost zero (3rd row, 2nd column). At it-
eration 5 the error has converged almost to its final value,
which can be seen from the small difference between iter-
ation 5 and 10 (4th and 5th row in Figure 3, respectively).
Note the difference in steady-state lamp commands between
iteration 0 and iteration 10 (column3, rows 1 and 5, respec-
tively): the steady-state lamp commands after convergence
(iteration 10) are the values that are needed to hold the mea-
sured temperature at 1100Æ C. The slow drift in the lamp
commands is due to the slow heating of the quartz window.
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Figure 3: Typical sequence of ILC iterations. This iteration was performed for an oxidation recipe with ramp-up rate of 250Æ C/sec. Each
row in the leftmost column shows the recipe and the simulated temperature measurements for one iteration; the middle column
shows the difference between the recipe and the measured temperatures, and the right column shows the corresponding lamp
commands.
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Figure 4: Simulation results for exact tracking of an oxida-
tion recipe with ramp-up rate of 50Æ C/sec. (a) De-
sired recipe Tre f and simulated measured temperatures
Ti; i = 1 : : :5; (b) Difference between Tre f and Ti; i =
1 : : :5; (c) Corresponding normalized lamp power in-
puts; (d) Wafer temperature non-uniformity with re-
spect to the wafer center temperature; center = 100
mm.

5 Command Shaping for Fast-Ramp Oxidation
Processes

It is important to investigate what lamp power inputs are
needed to exactly track fast-ramp oxidation recipes for the
generic RTP system. We will investigate exact tracking for
recipes with ramp-up rates of 50Æ, 150Æ and 250Æ C/sec,
respectively. Figure 4 shows exact tracking of a recipe with
ramp-up rate of 50Æ C/sec.

Figure 4(a) shows the recipe together with the simulated
measured temperatures (5 signals) after convergence of the
ILC iteration. Figure 4(b) shows the difference between the
recipe and each of the 5 measured temperatures. Figure 4(c)
shows the corresponding lamp commands, and Figure 4(d)
shows the wafer temperature non-uniformity. The surface
represents the temperature non-uniformity with respect to
the wafer center temperature as a function of time and wafer
radius; the left horizontal scale is time in seconds, the right
horizontal scale is wafer radius in millimeter (100 mm is
wafer center, and 0 mm is wafer edge), and the vertical scale
is temperature in Æ C.
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Figure 5: Simulation results for exact tracking of an oxida-
tion recipe with ramp-up rate of 150Æ C/sec. (a) De-
sired recipe Tre f and simulated measured temperatures
Ti; i = 1 : : :5; (b) Difference between Tre f and Ti; i =
1 : : :5; (c) Corresponding normalized lamp power in-
puts; (d) Wafer temperature non-uniformity with re-
spect to the wafer center temperature; center = 100
mm.

An immediate problem in exact tracking of ramp profiles
shows up in Figure 4(b) where sharp pulses occur in the
tracking error Tre f �Ti; i = 1 : : :5. Each channel of the RTP
model consists of a series/parallel connection of three first
order systems. Hence, the inverse plant differentiates the in-
put once, twice or three times, depending on the frequency
range. This means that exact tracking of Tre f can be ob-
tained only if Tre f is one, two or three times differentiable,
and depends solely on the frequency spectrum of Tre f and
the corresponding frequency response of the plant. The
recipe Tre f can only be differentiated twice, resulting in a
pulse input. However, a pulse input is not desirable because
it saturates the lamps and might even damage them.

To prevent pulse inputs, we filtered the recipe with a second-
order low-pass filter with relative damping equal to 1 and
natural frequency at approximately 1.5 Hz. This rounds-off
the sharp corners of the ramps, as can be inferred from the
simulated outputs in 4(a). Also, the cut-off frequency of
the Q filter, which filters the lamp power inputs, was cho-
sen equal to this frequency. The corresponding lamp power
inputs that provides exact tracking of this pre-filtered ramp
are shown in Figure 4(c). As expected, there are no sharp
pulses in the input signals. Instead, a pulse-like tracking
error remains in Figure 4(b).
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Figure 6: Simulation results for exact tracking of an oxida-
tion recipe with ramp-up rate of 250Æ C/sec. (a) De-
sired recipe Tre f and simulated measured temperatures
Ti; i = 1 : : :5; (b) Difference between Tre f and Ti; i =
1 : : :5; (c) Corresponding normalized lamp power in-
puts; (d) Wafer temperature non-uniformity with re-
spect to the wafer center temperature; center = 100
mm.

Figures 5 and 6 show the simulated tracking results for
ramps with rates 150Æ and 250Æ C/sec, respectively. Note
again that we pre-filtered the ramps with the 2nd order low-
pass filter in order to create a 3 times differentiable refer-
ence.

It can be seen from these figures that exact tracking of a
ramp with rate 250Æ C/sec, requires lamp command inputs
that exceed the normalized actuator limit of 1. Gradually
increasing the ramp rate from 150Æ C/sec shows that the ac-
tuator saturation limit is reached for a rate of approximately
210Æ C/sec . This clearly indicates that exact tracking of
fast ramps with rates higher than 210Æ C/sec is not possible
unless the tracking requirement is eased.

Comparison of Figures 4(d) to 6(d) shows increased wafer
temperature non-uniformity at the edge of the wafer with
increased ramp-rate. This is due to the fact that the guard-
ring is slowing down the heating of the edge of the wafer.
This effect becomes more prominent as speed of heating
(i.e., ramp-rate) increases.

Figure 7 shows the simulation results for tracking of an oxi-
dation recipe with ramp-up rate of 250Æ C/sec with normal-
ized lamp power commands limited between 0 and 1.
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Figure 7: Simulation results for tracking of an oxidation recipe
with ramp-up rate of 250Æ C/sec and lamp power satu-
ration. (a) Desired recipe Tre f and simulated measured
temperatures Ti; i= 1 : : :5; (b) Difference between Tre f
and Ti; i = 1 : : :5; (c) Corresponding normalized lamp
power inputs; (d) Wafer temperature non-uniformity
with respect to the wafer center temperature; center =
100 mm.

Although tracking is achieved during ramp-up, the sharp
corner cannot be negotiated quickly enough and conse-
quently the system’s response has an undershoot. More-
over, the measured temperature uniformity is degraded, see
Figure 7(b), and makes wafer temperature uniformity even
worse, see Figure 7(d).

One way to improve the wafer uniformity is to prevent the
lamp power commands from saturating. This can be accom-
plished by lowering the cut-off frequency of the ILC Q-filter
and, correspondingly, the cut-off frequency of the recipe
smoothing filter. Figure 8 shows the results for a cut-off fre-
quency of 0.5 Hz; the cut-off was chosen at 0.5 Hz because
at that frequency the lamp commands had a maximum value
right at the saturation limit, see Figure 8(c). Figures 8(a) and
(b) show that tracking (large temperature tracking error) has
been traded-off versus improved uniformity (measured tem-
peratures close together). Figure 8(d) shows the improved
wafer temperature uniformity. Basically, the temperature
uniformity of the unconstrained-lamp-command simulation
has been recovered for the most part, compare Figure 8(d)
with Figure 6(d).
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Figure 8: Simulation results for tracking of an oxidation recipe
with ramp-up rate of 250Æ C/sec with lamp power sat-
uration and smooth cut-off. (a) Desired recipe Tre f and
simulated measured temperatures Ti; i= 1 : : :5; (b) Dif-
ference between Tre f and Ti; i= 1 : : :5; (c) Correspond-
ing normalized lamp power inputs; (d) Wafer temper-
ature non-uniformity with respect to the wafer center
temperature; center = 100 mm.

6 Command Shaping for Fast-Ramp Spike Anneal
Processes

In spike anneal processes both temperature ramp-up and
ramp-down rates are important, as the amount of time that
the wafer is at processing temperature must be minimized
so as to minimize the diffusion lengths, see e.g. reference
[1]. Therefore, both ramp-up and ramp-down rate have to
be as high as possible.

Figure 9 shows tracking without trade-offs of a fast-ramp
spike anneal recipe with ramp-up rate of 250Æ C/sec and
ramp-down rate of 50Æ C/sec. The ramp-down rate of 50Æ

C/sec is a trade-off between temperature uniformity and ac-
tuator saturation: as can be seen from Figure 9(c), the lamps
start saturating low at time t � 13 sec. As soon as the lamps
saturate, temperature uniformity is lost, see Figures 9(b) and
(d). For ramp-down rates higher than 50 Æ C/sec, tempera-
ture uniformity is lost earlier, i.e., at a temperature closer to
the process temperature of 1100Æ C; this is undesirable.

The duration of the recipe at process temperature of 1100 Æ

C is chosen as 1 second. This is the minimum time that is
needed for the temperatures to hit the process temperature
and to ramp down immediately; for smaller soak times,
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Figure 9: Simulation results for exact tracking of a spike anneal
recipe with ramp-up rate of 250Æ C/sec and ramp-down
rate of 50Æ C/sec. (a) Desired recipe Tre f and simu-
lated measured temperatures Ti; i = 1 : : :5; (b) Differ-
ence between Tre f and Ti; i= 1 : : :5; (c) Corresponding
normalized lamp power inputs; (d) Wafer temperature
non-uniformity with respect to the wafer center tem-
perature; center = 100 mm.

the simulated measured temperatures do not reach the pro-
cess temperature of 1100Æ C anymore, but rather approach
a lower value.

Again, the normalized lamp commands exceed the limit of
1 for a ramp-up rate of 250Æ C/sec, which is not surprising
as the first part of the anneal recipe (up to time t = 8 sec.)
is exactly equal to the oxidation recipe shown in Figure 6.
Figure 10 shows the simulated tracking response of this an-
neal recipe when lamp commands are limited between 0 and
1. The clipping of the lamp commands have again a signif-
icantly negative effect on the wafer temperature uniformity,
see Figures 10(b) and (d). Also, the tracking property is
lost as the measured temperatures do not reach the process
temperature of 1100Æ C anymore, see Figures 10(a) and (b).
This could be solved by increasing the duration of the recipe
at process temperature, e.g. from 1 to 1.2 sec (not shown in
the Figure).

To solve the temperature non-uniformity problem, we again
decreased the cut-off frequency of the learning Q filter to 0.5
Hz, and, correspondingly, the cut-off of the recipe-filtering
filter. The simulation results are shown in Figure 11. Sim-
ilar to the oxidation recipe, the temperature uniformity has
improved at the cost of a large tracking error. However, for
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Figure 10: Simulation results for exact tracking of a spike anneal
recipe with ramp-up rate of 250Æ C/sec, ramp-down
rate of 50Æ C/sec, and with lamp power saturation.
(a) Desired recipe Tre f and simulated measured tem-
peratures Ti; i = 1 : : :5; (b) Difference between Tre f
and Ti; i= 1 : : :5; (c) Corresponding normalized lamp
power inputs; (d) Wafer temperature non-uniformity
with respect to the wafer center temperature; center =
100 mm.

this anneal recipe, the large tracking error has the conse-
quence of not reaching the process temperature at all, but
a temperature some 25Æ C lower. To solve this problem,
the duration of the soak period at process temperature has
to be increased by almost 1 second, which means almost a
doubling of the process time. An alternative would be to
lower the ramp-up rate to approximately 210 Æ C/sec to pre-
vent lamp saturation.

This clearly shows the trade-offs that have to be made:

� high ramp-up rate vs lamp saturation;

� high ramp-up and ramp-down rate vs temperature
uniformity;

� temperature uniformity vs soak time at process tem-
perature;

� lamp saturation vs temperature uniformity;

� lamp saturation vs tracking (smoothness of lamp
commands).
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Figure 11: Simulation results for exact tracking of a spike anneal
recipe with ramp-up rate of 250Æ C/sec, ramp-down
rate of 50Æ C/sec, lamp power saturation and smooth
cut-off. (a) Desired recipe Tre f and simulated mea-
sured temperatures Ti; i = 1 : : :5; (b) Difference be-
tween Tre f and Ti; i = 1 : : :5; (c) Corresponding nor-
malized lamp power inputs; (d) Wafer temperature
non-uniformity with respect to the wafer center tem-
perature; center = 100 mm.

All these trade-offs are correlated with each other, which
means that the process engineer has the availability of sev-
eral different “knobs” to reach his/her goal. The knobs that
we used here are:

� ramp-up and ramp-down rates;

� duration of process soak time;

� cut-off frequency of ILC Q-filter and recipe filter.

Other knobs that might also be available include:

� choice of different lamps to change maximum lamp
power;

� choice of recipes with more than one ramp-up and
ramp-down rate, i.e., change of ramp rate during
ramp-up and/or ramp-down;

� choice of different process temperatures.



7 Conclusions

In this paper we investigated input command shaping in
open-loop temperature control of fast-ramp RTP systems for
a simulation model of a generic RTP system. Because of the
inherent nonlinear system behavior of RTP systems, a non-
linear commands shaping technique was developed, based
on ideas from Iterative Learning Control. By developing a
convergent update law, the optimal linear solution is itera-
tively modified to compensate for the nonlinearities. The
algorithm iteratively shapes the input commands so as to
minimize the two-norm between a desired output trajectory
and the simulated current output trajectory.

This shaping method was applied to balance trade-offs both
for fast-ramp oxidation (RTO) and fast-ramp spike anneal
(RTA) processes. The simulation results showed that lamp
saturation severely affects wafer temperature uniformity,
which is unacceptable in many cases. To improve wafer
temperature uniformity, perfect tracking can be sacrificed
by frequency-band limiting (filtering) both the recipe and
the lamp commands. An alternative trade-off would be to
lower the maximum ramp rates, or, in case of spike anneals,
to increase the process soak time. Spike anneals are more
affected by lamp saturation than oxidation processes, since
saturation increases either the amount of time that the wafer
is at the processing temperature or destroys the wafer tem-
perature uniformity.

One way to implement the results shown in this paper, is for
each recipe to store the corresponding lamp commands in
feedforward look-up tables, and read-out these tables dur-
ing operation of the real RTP system . Two additional steps
are required when pursuing this method. Firstly and most
importantly, a good model of the RTP is needed. Secondly,
since even the best model is an approximation of the real
system, a feedback controller has to be used in conjunc-
tion with the feedforward look-up table, see reference [2]
on how to implement feedforward in conjunction with feed-
back.
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