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1 Introduction

SEEKER: How do I gain Good Judgement?
TEACHER: You must first acquire Wisdom.
SEEKER: How do I gain Wisdom?
TEACHER: From Bad Judgement.

Windsurfing, Learning, and Unfalsification

Learning, apparently, is the result of making mistakes. A good example is
learning to windsurf. The approach I took is simple. Fall Often. This is the
approach I seem to use regularly when learning anything. It helped a great
deal that I did this in Tahiti where both the air and water were 80 degrees
and there was little wind. I was in Tahiti following my first visit with Brian
Anderson in Canberra in 1984. A few years later when I was describing my
learning experience at windsurfing to Brian, who by the way is an excellent
windsurfer, we realized that how a human learns windsurfing might be a pro-
cedure that could be used for adaptive control. We speculated about human
learning of physical activities as follows. The human first learns to control
over a limited bandwidth and learning pushes out the bandwidth over which
an accurate knowledge of the ”"plant” is known. The human first implements
a low-gain controller and learning allows the loop to be tightened. The human
tends to “over-react” when the environment changes, often resorting to high-
gain or no-gain. Then falls. The few instants just before falling may provide
some new information about the next higher increments in the bandwidth
of the system. So of course mistakes are fundamental to learning. (This is
why stabilizing feedback is negative; the popular concept of positive feedback
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may be useful, in fact, when it is actually negative!) Our speculations on this
“windsurfing” approach to adaptive control was first expressed in [2] and
subsequently filled out in a series of papers [24,25].

In general, the learning process has the following steps: make observa-
tions, construct a model, and validate the model against new data. The last
step means the model is used for some purpose and tested against reality
in some way. If the intended purpose of the model is control design, then
the penultimate validation of the model is to implement a controller based
on the model. Of course the implementation step generates new data, and
this is usually where new mistakes are uncovered. For example, just prior to
“falling.”

Validation is perhaps a misnomer. One can never prove that a model will
be able to accurately predict the future. More precisely, the data can falsify
a model, i.e., the model may prove to be incapable of fully explaining the
data. This step, that is, discarding bad models, could be done before imple-
mentation. To emphasize this kind of in-validation, we use the more precise,
but awkward term: unfalsification. The essence of unfalsification is this: we
use data from one experiment and ask if it could have come from another
experiment. This second experiment need not be performed because if it is
shown that the data is not consistent with the second “thought experiment,”
then there is no need to perform it. If it cannot be proven inconsistent, then
the only recourse is to do the second experiment, e.g., implement the con-
troller under consideration. No guarantees are offered other than it fails to
be proven inconsistent.

In order to relate this to control design it is natural to think in terms of a
model based design, i.e., design the control using a model of the system be-
ing controlled. However, no mathematical model of a physical system is ever
exact. Hence, a complete model for purposes of control design should include
both the nominal model as well as an explicit description of the uncertainty
between the model and the physical system. Such a model is referred to as
an uncertainty model and is the starting point for robust control design [40].
Typically this uncertainty characterization is a guess, although an informed
one. Inferring the uncertainty from data alone is not provided by a straight
forward application of the classical method of indirect adaptive control i.e.,
system identification followed by control design. Classical system identifica-
tion alone does not offer this feature, e.g., [27]. Recent efforts, however, which
modify the classical approach to system identification, specifically for control
design, do address this problem, e.g., [28].

Classical Adaptive Control

Classical adaptive control methods, typified by the “indirect” scheme shown
in figure 1, can work well in many instances, e.g., when the plant variations
are slow and the input excitation is concentrated at those frequencies which
are critical. But even in this almost ideal case, initial plant-model mismatch
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Fig. 1. Classical indirect adaptive control: the control parameters are adjusted
“indirectly” via identification and control re-design based on the (model) estimate.

can induce unacceptably large transients. In more volatile circumstances the
adaptive system can exhibit instabilities, limit cycles, and chaotic behavior,
even when initialized at a desired controller parameter setting. Theoretical
studies have exposed some of the underlying mechanisms for stability and in-
stability of these classical adaptive control approaches, e.g., [3], [1]. A rough
explanation is that these classical adaptive schemes require gradients of the
error, which depend of course on the unknown plant, and hence, have to be
approximated. (There are some recently developed methods which provide
“unbiased” estimates of the gradients from data, e.g., [12], but they require
specialized experiments and thus are not al all suited to handling rapid or
unexpected system variations.) The same problems plague the “direct” adap-
tive schemes where controller parameters are directly adjusted to minimize
the error between the adaptively controlled plant and a reference system.

Unfasified Adaptive Control

Over the past several years a new approach to adaptive control, based on the
paradigm of “unfalsification,” has been under investigation. The approach is
based on a new perspective to the adaptive control problem and is important
in two ways: (1) as an “indirect” adaptive robust control method it provides
a model error bound from the experimental data which can be used to assess
the model quality for robust and/or fault tolerant control design, and (2)
as a “direct” adaptive control method it can be used to eliminate, without
further implementation, those controllers that would not satisfy the perfor-
mance goals. These approaches appear to provide the theoretical foundation
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for synthesizing reliable adaptive control systems which are not prone to the
difficulties encountered by classical approaches.

Unfalsification provide a means to estimate an uncertainty model from
finite data which includes both disturbance and dynamic uncertainty as well
as the usual parameters in the standard prediction error models. In this paper
we will show how unfalsification can be used for direct iterative adaptive
control, i.e., the control parameters are adjusted directly. In our earlier work
on iterative (windsurfing) adaptive control [24,25], tests for unfalsification
were not available.

Uncertainty model unfalsification using finite time domain data, which is
the underlying basis for the work presented in this paper, was first described
by Poolla et al.[33]. Earlier work using frequency domain data was presented
in [35], and some precursors to unfalsification can be found in [16-18]. Further
extensions and applications to plant uncertainty model unfalsification can
be found in [19], [20], [21], and [26]. A method employing a probabilistic
description of dynamic uncertainty is given in [10]. The origin of the ideas
for direct controller unfalsification are presented by Safonov and Tsao in
[34] and the references therein. The mathematical basis for unfalsification
of linear-time-invariant systems can be found in [11] and [8]. Computations
using convex programming is discussed in [37,38].

2 Iterative Adaptive Control

The roots of iterative adaptive control can be traced to the dual control
concept (see, e.g., [3, Ch. 7]), which typically involves indirect adaptation, i.e.,
identification followed by control parameter adjustment. A survey of iterative
identification and control schemes is given in [9]. Of particular relevance to
the work presented here — for purposes of comparison — is [39], [5], and [4]
which describe how data filters can be selected to make the identification and
control criteria merge; the windsurfer approach to adaptation and learning, as
described in [24,25], where the closed-loop bandwidth is gradually increased
every iteration; and [12], which describes a direct iterative controller design
method.

A generic iterative adaptive control system is depicted in figure 2. The
adaptive part of the controller consists of a parameter estimator and a control
design algorithm connected in series through a sample and hold. The latter
is what makes the system “iterative.” That is, the next controller design is
based on data collected while the previous controller was in place.

The system consists of two feedback “loops” each operating at different
sampling rates. The inner loop, operating at the fast rate, consists of the plant
and controller, where w is the control input to the plant, y is the sensed output
from the plant, and r is the reference command to the controller. The outer
loop, operating at the slow rate, consists of the plant parameter estimator
and control parameter design, The sequence of parameter estimates, 6, are
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Fig. 2. Iterative adaptive control system.

produced at the end of every data collection interval of /-samples, and hence,
depend on the prior applied sequence of controller parameters, &, which are
based on é, the prior plant parameter sequence, and so on. Thus, 6 and Q,
are piece-wise constant vector sequences, i.e., constant over every f-samples.
Specifically, during the i-th iteration (¢-data collection interval), that is, for
t =14 (i—1)¢...,il let § € RP denote the plant parameters and let
az € RY denote the corresponding control parameters. The relation between
9@ and a@ is typically algebraic and depends on the design procedure, i.e.,

oy = k() (1)

Let (y%,u’) € S* x S’ denote! the plant output and input data recorded
during the i-th data collection period, i.e.,

yi = { Yi+(i—1)y -+ Yie }
(2)

’U/i — { U1+(i—1)7""uie }

1 8% denotes the set of scalar sequences of length ¢, ie., 2 € 8¢ — z =
{ @ |t €[1,£] } where t are the uniformly spaced integer samples.
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After every data collection period of £ samples, a new parameter estimate,
denoted by 9;"'1, is determined by solving an optimization problem of the

form?,

0;7" = arg min V/(0) (3)
0c®

where ® C RP is the set of possible parameters, which in most cases is simply
RP. The objective function, V/(6), depends on the data (y',u’) € S* x S,
as denoted by the superscript ¢ and the subscript ¢, and on 6, where the
precise dependence is determined by the estimation and/or control design
criterion. For “indirect adaptive” schemes, the criterion is related to providing
a good fit to the data based on an assumed uncertainty model for the plant
system. Hence, a = k() simply denotes how the plant uncertainty model
parameters relate to the corresponding control design parameters. For the
“direct adaptive” schemes, as the name implies, the control parameter is
itself adjusted, i.e., « = @, and the criterion is directly related to closed-loop
performance. Actually even in the indirect case, the criterion is constructed
to be as close as possible to a closed-loop performance criterion or at least
useful for control design.

2.1 Convergence

Convergence analysis is very difficult because the data (y’,u’) € S’ x S*
depends on all past control parameter switching { a}, ceey aé }, which in turn
depend on all past plant parameter estimates { 0},...,0. } However, for long
data collection periods, provided that all past controllers are stabilizing, the
system memory of past controllers fades. Hence, in the limit, with infinite data
collected during every iteration, the data collected during the i-th interval
only depends on the last parameter values (af,6%), i.e.,

lim y* = y(af), lim v’ =u(a?), o = k(0 (4)

{—o0 {—o0
Similarly, the objective function becomes,

Jim Vi(0) = V(0.09), o = (6") (5)
So in the limiting case of infinite data, the parameter estimation step at
iteration 1 is,

0"t =arg min V(0,a%), o = k(0 (6)
0c®

2 The optimization operation “argmin” as used here and throughout the paper
is to be understood to mean the minimizing argument, or if there is no unique
minimum, then “argmin” refers to the set of (local) minima, i.e., argmin f(z) =
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As observed in [13], for infinite data, convergent parameter values are equiv-
alently fixed-points of the mapping I" : RP — RP_ where

I'(#) = arg min V(3h,a) subject to a = k(f) (7)
P EO
Hence, if 0is a fixed-point, then
0 =arg min V(,d), &=r(h) (8)
P EO

and must satisfy the necessary condition for optimality, namely,

p) R

VOO =0 )
However, the minimizer, 0y, of V (6, k(8)) satisfies,

QV(Q, /@(9))‘ =0 (10)

tolv} 0 = Oop

As pointed out in [13], the fixed-point 6 is not likely to be the same as Oop;.
So it appears that iterative schemes have a built-in flaw. Even if the infinite-
data estimation criterion, V (6, k(6)), is constructed to be a sensible control
criterion, no iterative algorithm can be guaranteed to reach the minimum,
or at least a local minimum. This has led some researchers to seek another
path, e.g., in [12] the authors show how to obtain an unbiased estimate of the
gradient (and Hessian) of error signals with respect to control parameters by
performing a series of specialized experiments.

2.2 Relation to Slow Adaptation

This “flawed” property of iterative adaptation is a recrudescence of the identi-
cal property of all slowly varying parameter adaptive algorithms, e.g., see [1],
[32], or the chapter on averaging analysis in [3]. As an illustration, consider
the adaptive algorithm,

Or41 = 0 + poe(ay)er(0r, ap)
(0, 0) = yt(EgO)l) — ()"0, (11)

where p > 0 adjusts the speed of adaptation and where £;(0;, ;) is the
prediction error associated with an ARX plant model being identified in
closed-loop with the control parameters set to a;. If the adaptation is slow,
i.e., p is sufficiently small, then as shown in [1], there exists (6)', o}') satisfying
(11) in an order-u neighborhood of (6, &) obtained from?

¢(d)e(é,&)> —0, a=xr(b) (12)

‘
1
3 . . T <
<x> denotes time average, i.e., <x> = zlggo 7 th
t=1
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Equivalently,

b = <¢(a)¢(a)T>_l<¢(&)y(d)> (13)

This is precisely the solution to (9) if V(6,«) is the standard RMS (least-
squares) identification criterion,

V(,a) = <5(9,a)2> (14)

In this case the reason that (6, &) is not the optimum solution given by (10)
is that

H(K(O) # 2ye0.5(6)) (15)

The conditions which insure that (6, o)) satisfies (11) for small p do not
insure that the solution is stable. Further conditions are required [1], [32].
Similar results hold for “direct” adaptive algorithms, e.g.,

i1 = o + ppy(ay)er (o)
ev(a) = (@) -yt (16)
up = () oy

In this case for sufficiently small u, there is a solution ) in an order-u

neighborhood of & satisfying

((@)e(@)) =0 (17)

As in the previous case, & is not the solution to (9) with the logical choice,

Via) = <€(a)2> (18)

because

¥() # 5—e(a) (19)

But all is not lost for iterative schemes. By introducing an unfalsification step
we can develop iterative schemes which avoid the above “convergence” prob-
lems. Perhaps convergence is not an appropriate concept when conclusions
are being drawn, in this case eliminated, strictly from finite data. Let’s leave
this to the philosophers.
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3 Parametrization and Performance

3.1 Parametrization
We will assume throughout that the control is given by,
u=C(a)(r—y) (20)

where for fixed a € R?, C(a') € LTI* The controller parameters, «, are to be
adaptively adjusted. There are of course many possible ways to parametrize
the controller. For example, the control parameters, o, can consist of all the
numerator and denominator transfer function coefficients up to a specified
degree, thereby restricting the controller order. For example, all order-n con-
trollers can be parametrized as follows:®

C(a) = N(a)D(a)™ !
N(a)=by+biz7 4+ +b,z "

D@)=1+a1z7 '+ - +a,z" (21)
o= [fh"'an bO"'bn]T c R2nt1
Another paramtrization is all the PI controllers, i.e.,
-1
Cla)=ap+ar a=lap ar |’ € R? (22)

1—21

Obviously many parametrizations are possible, e.g., co-prime factorizations
where the factors are affine in the control parameters, or direct affine parametriza-
tions with orthogonal basis functions [36].

There are a number of other interesting possibilities. For example, a
list of controllers each corresponding to some measurable condition of the
system. This approach is somewhat like “multiple model control” or “gain-
scheduling.” Control structures could have free parameters (o) correspond-
ing to a prescribed set of anticipated faults, e.g., changes in sensor bias and
scale factors, changes in actuator gains and bandwidth, and changes in a me-
chanical structure resulting in spillover of elastic modes into the closed-loop
bandwidth. A similar approach was investigated in [7] for a switching missile
autopilot.

3.2 Performance

We would like the closed-loop system to behave like the reference system,

Yref = Tref T (23)

for a specified system T} € LTI. “Behave like” can have a variety of mean-
ings. For example, it could mean that the output error, y — Tyt 7, should be

4 LTI is the set of linear-time-invariant systems with rational transfer functions.
5 2% denotes the k-delay operator.
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small relative to the size of the command r. An example of such a specification
is that® |

ly = Tret rllypne < plrllimer 7l <00 (24)

rms
In this case, we are not looking for a response to a specific r, such as a sinusoid
at one frequency or a step, rather, for every possible r such that HrHrms < 00.
For example, if the plant system is given by,

y = Pu (25)
where P € LTI, and the controller is given by,

w=C(r—y) (26)
with C' € LTI, then (24) is equivalent to,

IT(P,C) = Tretllg,, < p (27)
with T(P, C') given by,

T(P,C) = (1+ PC)"'PC (28)

This is clearly a measure of the error between the transfer functions of the
closed-loop and reference systems. Hence, for a given controller parametriza-
tion, C(«) € LTI, and a given plant parametric model, P(f) € LTI, the
optimal control design (1) is,

#(6) = argmin [ T(P(0), C(a)) — Tretllgr (29)

@

Hence, the designed closed-loop system T'(P(0),C(x(6)) is the closest Hoo
approximation to Ty ef, the reference system. Since it is unrealistic to expect
that the plant is in the model set, i.e., P # P(6), it follows that the actual, or
achieved closed-loop system, T'(P, C(x(f)), may be quite different. Of course
the most desirable goal is,

opt = argmin [ T(P, C(a)) — Tretllg__ (30)
«a

The performance measure can be modified to penalize control activity, e.g.,
2 2 2
||y = Tret THrms + )\HuHrms < p2||r||rms’ vHrHrms < (31)

Again, if the plant and controller are LTT, then this measure is equivalent to,

T(P,C) — Tre
{ o f] ‘ L= (32)
where
Q(P,C)=(1+PC)"'C (33)

5 The RMS-norm of a sequence (technically a semi-norm) is defined as H:c”rmg =

¢ 1/2
1 2
(ﬂ%ezxf)
t=1
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4 Uncertainty Model Unfalsification

4.1 TUnfalsification

The generic uncertainty model unfalsification problem is as follows:

Given scalar data sequences e,v € S, establish necessary and suffi-
cient conditions for the existence of a disturbance sequence w € S*
and a causal system A such that

we W(o), AeA(d) (34)
and which are consistent with the model
€t = Wy —+ (A’U)t, te [1,4 (35)

The sets W (o) and A(S) denote, respectively, a set of sequences with
norm bounded by ¢ and a set of systems with gain bounded by 4.

4.2 Uncertainty Model Forms

The data sequence e is often obtained as the prediction error associated with
an assumed model of the system, and v is a function of other sensed signals,
the choice reflecting the type of dynamic uncertainty, or model error. For
example, consider the standard prediction error form in [27],

e=H '(y—Pu), P,HecLTI (36)

If v = u, then A represents additive model error, i.e., the uncertainty model
set is given by,

J(o,0)={y,u |y=Pu+HAu+ Hw, we W(o), AecA() }

If v = Gu, then A represents multiplicative model error, i.e., the uncertainty
model set becomes,

J(0,0)={y,u | y=Pu+ HAGu+ Hw, we W(o), AecA(d) }

There are clearly many variations one could include, e.g., combinations of
additive and multiplicative model errors, co-prime factor uncertainty, and so
on, ultimately leading to the uncertainty structures described by the more in-
clusive linear fractional representation familiar in robust control design, e.g.,
[30]. In addition, the error could be obtained from a parametric prediction
error model with parameters associated with transfer function coefficients
which characterize the input/output and disturbance dynamics, i.e.,

e(0) = H(0)™" (y — P(0)u) (37)

with 6 € ©, the set of parameters for which the predictor is stable [27].
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4.3 Disturbance Uncertainty

There are many ways to characterize the disturbance set W (o). For example,
consider the following sets of finite sequences:

¢ Rms-bounded noise

Wrms(a) = { w e SZ

1 2 9
ol <o | 59
e Time-domain white noise [31]

Wt time(7, 1) = { w € S° [ [ry (1) <47 (0) } (39)

where r,,(7) is the auto-correlation of w,
1 b—T
Tw(T) = Z ;wtwt+7—7 T E [07m — 1] g Y/ (40)

Observe that r,(0) = Hw”z/f.
e Frequency-domain white noise [29]

Wni_req (0, €,m) = { w € 8 | eig{Rpm(w)} /o> —1| <€ }  (41)
where
rw(0) o rp(m—1)
Ry (w) = : : (42)
ro(m—1) -+ 1r,(0)

The disturbance set Wiyns(0) is the simplest of choices for deterministically
characterizing “noise.” The main advantage is that it is a convex set and
therefor easy to handle in optimization. However, there are no restrictions
preventing correlation with inputs and so the “worst-case” can occur. As
shown above, characterizations of deterministic sets which resemble white
noise have been examined in [29] in the frequency domain with application
to system identification and in [31] for both time and frequency domains
with application to robust control. The set Wnt_time(y, ™) is essentially
one of the standard white noise test where « is chosen from y? distribution
tables; m is the lag window used to smooth the correlation function. The set
Wht_freq(0, €, m) is shown in [29] to also be useful for white noise testing;
m again is the lag window, o? is the rms-level of w and hence, the average
level of the spectrum of w, and ¢ € (0,1) determines the “flatness” of the
spectrum. Clearly these latter sets do preserve the character of white noise,
but they are not convex. However, they are no worse than quadratic and so
may be quite amenable to conjugate-gradient methods of optimization. The
work reported in [23] shows a two-step procedure involving a Kalman filter
for unfalsifying stochastic disturbance signals.
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4.4 Gain-Bounded Dynamic Uncertainty

Uncertain dynamics can also be characterized in a number of ways. Consider
the following gain-bounded, time-invariant (TI) dynamic uncertainty sets:

e Linear (LTI)

Arr(®) = { AT | 4], < 8ol Vel < o0 } 43

Since A € LTI, the gain bound condition is equivalent to the frequency
domain bound:

AE) <6, we [-m,a] (44)
e Incrementally nonlinear (INTT)

Awr={ A€TI | v, - av]l,,, < 8o —wal,... Ylorl,c el < 00 }45)
e Nonlinear (NTT)

Anrr={ AeTI | [|Av],, <6l Yo, <o}  (46)

4.5 TUnfalsification

Consequences of unfalsification are summarized in the following.

(i) Finite-Data Test
Given data sequences e,v € S, there exists a sequence w € S* and a
causal system A such that,

ey = Wy + (A’U)t, te [1,6] (47)
with w € Wiyns(o) if and only if

Ll < o2 ()

and such that:
o Ac Arri(9) if and only if,
T{e—w T{e—w}—0T{v} T{v} <0 (49)
with (T {e}, T {v},T {w}) the {xL Toeplitz matrices formed from
the sequences (e,v,w), respectively, e.g.,

eg 0 -0
ey ey - 0
T {e} =
€ €p—1 - €1
o Ac Ainti(9) if and only if, Ym —n=0:{¢ and ¥Vt € [1,/],
[z = 2™) (e — w)HLQ[l,t] <5 (="~ zm)vHLm_ﬂ (50)
where 2 is the k-forward shift operator, i.e., if v = { x1,72,... }

then zFx ={0,...,0,21,72,... } with k-zeros.
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o Aec Anti(9) if and only if ¥t € [1,4],

e_w||L2[1,t] = 6||,UHL2[1,t] (51)
(i) Uncertainty Tradeoff

The (0,0) boundary between falsified and unfalsified uncertainty mod-
els for a given finite data set with w € Wyns and A € A, (),

p= LTI, INTI, NTI is determined by solving:
0,(9) = min{ 671“6 - AUHLQ[LZ] | AeA,(d) }7 0<d<6,(52)

with

Op=min{ § | e; = (Av)y, t € [1,4], Aec AL) } (53)
(iii) Nesting
For all § >0,

onti(6) < omnti(9) < ovri(0) (54)
and

OnTI < diNnTI < OLTI (55)

Comments

(1) The results in part (i) for A € Apri(d) and the necessity for A €
AnTi(d) (which is the same as the necessary and sufficient conditions for
gain-bounded linear-time-varying (LTV) systems) is found in [33]. Proof of
the remaining results in (i) can be found in [21].

(2) The tradeoff and nesting results follow from convexity of the uncer-
tainty sets. All the results can be extended when the error is formed from
the ARX parametric prediction error model with efficient computations using
LMIs, [6]. Output error and other linear fractional parameter forms are not
convex sets, and the nesting and tradeoff results are thus not guaranteed. A
further discussion of the relation of NTI and LTI uncertainty sets, can be
found in [19-21].

5 Controller Unfalsification

In a series of papers by Safonov et al.(see [34] and the references therein),
it is shown how to directly falsify a candidate controller before it is imple-
mented. The procedure for controller unfalsification is essentially the same
as that for uncertainty model unfalsification, but applied to the closed-loop
specification. Specifically, the closed-loop specification (24) can be viewed as
the uncertainty model set,

36 = {oor =T vl € ol - Vol <0} (56)
The goal is to adjust the parameters @ € R? such that the controller,
u=C(a)(r—y) (57)
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makes p as small as possible. From the previous discussion on unfalsification of
uncertainty models, without any further assumptions about the plant system,
the specification set is equivalently expressed as,

Jp)={yr |y—Tetr=A4r, A€ Anrti(p) } (58)

If we make the additional assumption that the closed-loop system is LTI,
then the specification becomes the LTI uncertainty set,

Jp)={yr |y—Terr=2r [Alg_<p} (59)

The finite data tests provided in the previous section can now be used to
compute the performance p. Let (y,u,r) € S x S* x S* denote the measured
data for t € [1, /], where ¢ is essentially the current time. If A € NTI, then
it follows from (51) that the measured performance is,

Prncas = min{ p } HEHLz[l,t] < pHTHLg[Lt] , te[1] } (60)
E=Y— Tref r

If A € LTI, then it follows from (49) that the measured performance is,

Phucas =min { p | T{Y T{e} = T () T{r} <0 } (61)

Both of these measure the performance of the already implemented con-
troller, which may have already switched (adapted) several times. The ques-
tion arises: could the existing data record be informative about an untried
candidate controller, say C(«), whose predicted performance might be bet-
ter than the measured performance? To answer the question, consider, the
following “thought experiment:”

If a candidate controller C(«) had produced the measured plant out-
put/input data (y,u) € S* x S¥, then the reference input would have
been the sequence r(a) satisfying

u=C(a) (r(e) —y) (62)
Assuming the indicated inverse exists,
r(a) =y +C(a) tu (63)

Thus, the error, e(a), would have been,

e(a) =y — Tret 7(@)
(64)
= Oref Y — Trcfc(a)ilu

with
Sref =1- Tref

Hence, the set of all controller parameters that achieve a performance
level, p, would have been,

Au(p) ={aceR? |e(a) = Ar(a), A€ Alp) } (65)
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By this argument, A,(p) is the the set of all controller parameters which are
unfalsified by the available data, with respect to performance level p.
If A € NTI, then

Aulp) { a € R ‘ HE(Q)HLZ[IJ] < pHT(a)HLz[l,t] , te (L] }

(66)

N {aERq

te(l,4]

le@) g < Plr@) iy b

This last expression shows that since Ay(p) is an intersection of inequalities,
one for each data point, it follows that as more data is recorded, i.e., as
¢ increases, the unfalsified parameter set, Ay(p), can only get smaller. The
falsified parameter set, its complement, therefor, can only increase. Similarly,
if A € LTI, then

Acp) = { a € RY | T{e(@)} T {e(0)} = T {r(@)}" T {r(@)} <0 }(67)

In this case as ¢ increases, the Toeplitz matrices get larger thereby incorpo-
rating more constraints imposed by the data.

Having obtained the unfalsified set of controller parameters, essentially
a set of candidate controllers, it remains to choose a controller parameter
to implement in the next iteration, £ + 1. An aggressive choice is one which
produces the smallest p, i.e.,

(s Pring) = argmin{ p | @ € Ag(p) } (68)

A cautious choice, reflecting the distribution of elements in Ay, is the average,
or the geometric center of the set, i.e.,

(Qnss Ping) = argavg { p | @ € Ag(p) } (69)

No matter the choice, the control parameters are considered likely to be
updated whenever the unfalsified performance level, pf,. #» is smaller than the

measured performance, p’,..- Thus, the controller parameter update rule is,

¢
aunf7 pﬁnf < pfneas
a£+1 — (70)
¢
a, pflnf > pfneas
Clearly if the exogenous inputs are not sufficiently rich from iteration to
iteration, then it is likely that the control will not switch.
As discussed in [34], there are several advantages to this data-based con-
trol design approach:

1. The approach is nonconservative; i.e., it gives “if and only if” conditions
on the candidate controller C'(«) to be unfalsified.
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2. The unfalsified set of candidate controllers is determined from past data
only — no candidate controller is implemented if it is falsified, and the test
is applied without actually implementing the candidate controller C(«).
Equally important, if the test fails, those candidate controllers, C(«),
which have been falsified, again without implementation, can all be dis-
carded from any future consideration.

3. The test for controller unfalsification is “plant-model free.” No plant
model is needed to test its conditions. It depends only on the data, the
controller, and the specification.

4. The data which falsifies a controller may be open loop data or data gener-
ated by some other control law which may or may not be in the parametric
set.

5. Controller falsification implies falsification of any underlying uncertainty
model for the plant model, based on the same data, which would have
resulted in the same controller. The converse, however, is not true: a
falsified uncertainty model of the plant does not imply falsification of
a controller based on this falsified uncertainty model. As a result, us-
ing the same data set, direct controller unfalsification can produce less
conservative control than plant unfalsification followed by robust control
design.

5.1 Relation to Windsurfing

A key element in the windsurfing approach to adaptation is to vary the
reference system bandwidth. This is one of many possible performance pa-
rameters, e.g., overshoot, settling time, and so on. To illustrate the idea let 3
denote the reference system bandwidth and let Ty.¢(5) denote the reference
system. Now the set of unfalsified control parameters depends not only on p,
the performance error, but also on (3,

Ap.B) = {a €RT | (0, B) = Ar(a), AcA(p) }
€(0¢, ﬁ) =Yy - Tref(ﬁ) ’I"(Oé)

We can now generate a family of unfalsified parameter updates which depend
on (. For example,

(aﬁnf(ﬂ)vpﬁnf(ﬂ)) = argmin{ P | (CRS Ai(paﬂ) } (72)

This will be illustrated in the example in section 6.1.

(71)

Computational Issues

Measured performance, ppeqs, can be obtained directly from either (60) or
(61). However, solving the the optimization problem for (puns, @uny) has two
difficulties. First, it is not in general convex, hence, there is no guaranty of
finding the optimum. For PID and/or lead-lag type controllers, which have
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a small number of parameters, a combinatorial search is very effective as has
been shown in [34] and will be demonstrated in the example in section 6.1.

Difficulties with the optimization are to be expected, because in essence,
we are trying to solve the fixed-order control design problem, which is generi-
cally hard even when the plant is known, e.g., [15]. In the case here, the plant
is not known, and the problem is compounded further by using data! How-
ever, as in the output error identification problem, which is related, there are
some instances where there are no local minima for parameters restricted to
a region where a certain transfer function is passive [27, Ch.10,p.301]. Even
if this could be applied here, obviously more assumptions about the plant are
required.

The second issue is that the problem size increases as time goes on be-
cause more data is recorded, effectively adding more constraints. We offer an
approximate solution to this problem in the next section on iterative unfal-
sification. Essentially the data is only recorded over a fixed length window
which slides along with current time. This makes sense if the data record
length, £, is long compared to the assumed system memory.

Dealing with the ever increasing problem size can be addressed by devel-
oping recursive methods which provide outer and inner ellipsoid bounds on
earlier data, hence compressing the earlier data into matrices on the order
of the parameters. This is akin to least-squares estimation which compresses
prior information into parameter sized covariance matrices. (This is still an
idea.)

For LTI closed-loop uncertainty sets, the unfalsification tests can be re-
cast as convex optimizations. In [37,38] it is shown that a reformulation of the
performance specification as a receding horizon criterion allows the problem
to be cast as a convex optimization. Another approach is described next.

5.2 LTI Unfalsification

Consider the closed-loop specification represented by the uncertainty model
set (59),

J(p) = { y,r ’ y— Tiet 7= AT, HAHHOO <p } (73)
To test the candidate controller,

u=C(a)(r—y)
form

r(a) =y +Cla)"lu

where (y,u) are given data of length ¢. The closed-loop uncertainty model is
then

(1 - Tref)y - Trefc(a)ilu = A(y + C(a)ilu% ||A||Hoo S P
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Suppose that C(«a) is parametrized as given by (21). If £ is sufficiently large,
then both sides of the the above LTI uncertainty model can be operated on
by N(«a) to give,

e(a) = Af(a), 1|4y, <p
e(a) = N(a)(1 = Trer)y — D(0) Treru (74)
f(@) = N(a)y + D(a)u

The set of unfalsified controller parameters is then,

T {e(@)}" T {e(@)} = 22T {f(e)}" T {f(e)} 0 }(75)

Since N(a) and D(«) are affine in «, so are e(«) and f(«). Hence, for a fixed
value of p, the above set is convex in «. Solving for a which produces the
smallest value of p is in the form of a “generalized eigenvalue problem” and
can be solved using convex programming [6].

Aslp) = { a e R

6 Iterative Controller Unfalsification

In this section the unfalsification paradigm is used to develop an iterative
direct adaptive controller.

During the i-th iteration (data collection period) the controller is held
fixed at C(a?) € LTI, i.e.,

u=C(a")(r—y) (76)

Suppose each data collection period contains ¢ samples, where (y*, u’,r?) €
S’ x 8¢ x S’ is the data measured. Define the corresponding measured per-
formance error by,

Phrcas =min{ p | e = Ar', A€ Anti(p) } (77)
where
e =y — Ther 1 (78)

Caveat emptor — This definition of measured performance for the
i-th data collection period is reasonable only if the period data length,
4, is sufficiently large so as to make negligible any effects due to
controller adjustments or exogenous disturbances in previous periods.
Assume from now on that this is the case.

From (51) it follows that the measured performance is given by,

Pineas = min{ P ‘ ||5iHL2[1,t] < p||riHL2[1,t] , teLY] } (79)



20 Robert L. Kosut

Based solely on the data collected in the i-th period, the set of unfalsified
controller parameters that achieve a performance level, p, is,

Aj(p) = { aeRI ‘ (@) < Pl @)lp,p,y » tELY } (80)

It follows that the set of all controller parameters which are unfalsified, with
respect to performance level p, up to and including the -th interval, is the
intersection of these sets, i.e.,

Al(p)= () ALlp) (81)

ke(l,9)

As before, it remains to choose a controller to implement in the next iteration.
The aggressive choice produces the smallest p, i.e.,

(s Pany) = argmin { p | o€ A(p) } (82)

whereas the cautious choice, reflecting the distribution of elements in A?, is
the average, or the geometric center of the set, i.e.,

(g Pimy) = argavg { p | a € A(p) } (83)

We then propose to update the control parameters whenever the unfalsified
performance level, py, ¢, is smaller than the best measured performance,

pfneas = . min i p]meas (84)
jel,q]

If not, then control is returned to C(a*), the controller which produced the
best measured performance. Thus, the controller parameter update rule is,

. alz_l’nf’ p;L]nf < prkneas
ot = (85)
k .
a, pflnf > pﬁ]eas

This is a slightly different procedure than in the previous “one-step-at-a-
time” case. Here, because the control is held fixed at C(a?) for a long time,
we have (we assume) a good reading of the performance with this control. In
the previous formulation, the control can switch at every instant when new
data is acquired.
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6.1 Simulation Example: PI Control of a Nonlinear System

The iterative procedure is simulated with the following nonlinear plant sys-
tem:

yzG(U—FN(u))

A7t
G=—~2
1— 4271

0, lul <d
Nu)=<u—d,u>0

u+d, u<0

o]l s < @
rms —

The plant system is thus a linear system, G, driven by an RMS-bounded
disturbance, v, and controlled through a deadband nonlinearity, N(-), with
deadband of size d. The control is given by the PI control,

u=C(a)(r—y)
where
arz™!
1—21
The reference system is
(1—-a)z7t
1—az"1"’

Cla)=ap+

Tref = a = exp(_2ﬂ—fref)

Figures 3-6 show the results of the simulations. Each figure has two rows and
four columns. Each row corresponds to a different bandwidth (fief) of the
reference system. The rows are as follows:

e row 1: the initial output response, before adaptation, compared to the
reference system output.

e row 2: the final output response, after adaptation, compared to the ref-
erence system output.

e row 3: the per iteration values of pj, s, P4, > and the Ho-norm of the
error between the linearized system and the reference system.

e row 4: the PI gains per iteration.

The simulations were performed under the following conditions:
e The control was initialized as the low gain integrator:

.01z~
C=—
1—271
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e A single repeating cycle of the reference input is given by:

1t=1:200
r=1< —1t=201:400
0t =401:600

e There are two cycles of 4 iterations each of this reference.
— During cycle 1, the reference system bandwidth
fret = .005 hz
The results are shown in column 1 of all the figures.
— During cycle 2, the reference system bandwidth
fref = .05 hz
The results are shown in column 2 of all the figures.
e The deadband width (d) and RMS-disturbance level (o) were set as fol-
lows:

figure 3d=0 o=0
figure4d=0 o=.1
figure 5d=150=0
figure 6d=150=.1

We see in all cases that the iterative unfalsified adaptation works very well
despite some extreme variations and no prior knowledge about the plant
system. Although not shown, the intermediate time responses are not very
much different than the final responses (after 4 iterations).

7 Concluding Remarks

There are several intriguing aspects of unfalsification as applied to direct
adaptive control. First, existing data can be used to falsify an experiment
you would like to perform, but cannot. Secondly, controllers can be proven
to be unable to meet the closed-loop performance specification without being
implemented. This reduces the set of unfalsified controllers, and this reduc-
tion is non-conservative. But what about convergence? The answer to this
could be: why convergence? If adaptation is meant to be used in the face of
highly uncertain systems, which may exhibit large variations over time and
operating conditions, there is no convergence. We just keep throwing away
bad controllers. A well respected American football player, when asked why
he was such a good defender against the run, replied, “I just keep knock’n
’'em down ’till I get to the one with the ball.”

An issue not discussed here is the general topic of estimating an uncer-
tainty model from data. As shown in [22], unfalsification of an uncertainty
model consisting of a Gaussian white disturbance and an H,, bounded model
error leads to conclusions, in the control design context, that are not all that
different from other methods, e.g., stochastic embedding [10] and model-error-
modeling [28]. All these methods are utilizing “least-squares” in some form,
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and perhaps that is the connecting piece, despite the fact that the inter-
pretations seem different. Although often extremely effective, I view all these
methods as somewhat piece-meal, and not satisfactorily elegant. Perhaps this
is due to fundamental limitations, e.g., it is not possible to uniquely separate
dynamic and disturbance uncertainty from finite data. For control design,
however, this limitation may have no consequence. No model is needed in
direct controller falsification [34] or direct tuning [12,14] — the data “speaks”
to the closed-loop specification.

The answer will come, I believe, by resolving what I consider a funda-
mental challenge: to develop a self consistent theory of identification and
validation from a single set of assumptions.
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