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1 Introduction

Decision Feedback Equalization (DFE) is expected in
digital TV receivers and other high error rate environ-
ments, e.g., [1]. Error propagation usually occurs in
infrequent bursts, [4, App.10-A],[2, sec.7.5.4] It is ar-
gued here and in [1] that the minimum mean-square-
error (MMSE) adaptation mechanism in the presence of
error propagation will find a better answer than the so-
lution computed in the absence of decision errors. This
paper attempts to formalize this benefit during the de-
sign phase, by considering other (convex) performance
measures than MSE assuming perfect decisions. After
all, any such modified objective is just a proxy for de-
termining the optimal error rate. As discussed in [3],
error propagation is ”enhanced” by large gains in the
decision portion of the DFE portion. We consider a
method to penalize these gains, but not in the uncon-
strained (perfect decision) MSE sense.

2 Standard DFE System

Consider the DFE communications system:
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âu

Q(·)

The system eqations are:

ât = Q(ut) (1)
ut = F (λ)rt −D(λ)ât (2)
rt = wt + G(λ)at (3)

where λ denotes the backward shift operator, i.e., for
integer times t, λxt = xt−1, G(λ), F (λ), D(λ) are
linear-time-invariant systems, and Q(·) is the quantizer.
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The source sequence, a, consists of elements in the 
-ary
alphabet (
 is even),

A = {±1,±3, . . . ,±(
− 1)} (4)

The received signal sequence, r, is a version of the
source sequence, a, distorted by the channel dynam-
ics, G(λ), and corrupted by an additive noise sequence,
w. The sequence â is an estimate of the source sequence
and is the output of the quantizer,

Q(ut) = arg min
α∈A

|α− ut| (5)

In the binary case (
 = 2), A = {±1} and the quantizer
reduces to the sign function. The filters F (λ) and D(λ)
are FIR, i.e.,

F (λ) = f0 + f1λ + · · · + fnλ
n

D(λ) = d1λ + · · · + dmλm (6)

The channel, G(λ), is stable and possibly IIR, that is,

G(λ) =
∞∑

i=0

gi λ
i (7)

with gi → 0 as i → ∞, exponentially. The
sequences f = {f0, . . . , fn}, d = {d1, . . . , dm},
and g = {g0, g1, . . .} are the impulse responses of
F (λ), D(λ), G(λ), respectively.

The DFE system can also be expressed in terms of the
impulse response sequences g, f, d, that is,

ât = Q(ut) (8)
ut = (f ∗ r)t − (d ∗ â)t (9)
rt = wt + (g ∗ a)t (10)

where ∗ denotes convolution. The DFE design variables
are the FIR filter coefficients f = {f0, . . . , fn} and d =
{d1, . . . , dm}.

3 Symbol-Error-Rate (SER)

There are two basic DFE design problems: (1) de-
sign with known channel, and (2) design with unknown
channel, i.e., adaptation. Here we consider only the
former problem.



To specify the design issues more precisely, define the
symbol error sequence,

et = ât − at−δ (11)

for some integer δ ≥ 0. The symbol error is often re-
ferred to as the hard error. The design goal is to select
the filter impulse response coefficients f, d, and the de-
lay δ, to minimize the symbol error rate,

ρ = P{ et �= 0 } = 1 − P{ et = 0 } (12)

where the probability measure, P{ · }, is over the distri-
butions of the source sequence a and the noise sequence
w.

We also define the soft error,

εt = ut − hδ at−δ (13)

where hδ is the δ-th impulse response coefficient of

H(λ) = F (λ)G(λ) =
∞∑

i=0

hi λ
i (14)

After some algebra, the soft error can be expressed as,

εt = F (λ)wt + H̃(λ)at −D(λ)et

H̃(λ) = F (λ)G(λ) − λδ(D(λ) + hδ)
(15)

Observe that H̃(λ) is FIR only if G(λ) is FIR. Also, the
term H̃(λ)at does not depend on at−δ because hδ at−δ

is subtracted from F (λ)G(λ)at. The soft error can be
written in terms of impulse responses as,

εt = (f ∗ w)t + (h̃ ∗ a)t − (d ∗ e)t

h̃ = g ∗ f − λδ ∗ (hδ + d)
(16)

where h̃ is the impulse response of H̃(λ). The quantizer
output can then be expressed as,

ât = Q(hδat−δ + εt) (17)

4 Design Heuristic with Known Channel

The obvious design goal is to minimize the symbol error
rate,

min
f,d,δ

ρ (18)

Unfortunately there is no computationally feasible so-
lution to this problem for the DFE configuration. Here
we present heuristic solutions which modify the classi-
cal minimum-mean-square-error (MMSE) method.

Binary alphabet
In the binary case, A = {±1}, and hence, Q(x) =
sgn(x). If hδ > 0, then,

ât = sgn(hδat−δ + εt) = sgn(at−δ + ε′t) (19)

where prime denotes division by hδ, i.e., (·)′ = (·)/hδ.
Thus,

ε′t = εt/hδ = (f ′ ∗ w)t + (h̃′ ∗ a)t − (d′ ∗ e)t

h̃′ = g ∗ f ′ − λδ ∗ (1 + d′)
(20)

Since only the sign of hδ matters in the binary case, 1 it
follows that the design goal is to select (f, d, δ) to make
ε′ small in some sense.

When he symbol-error-rate, ρ, is typically very small,
there can be very few errors over the tap length
of the decision filter D(λ). For example, suppose
there is only one non-zero error in any time window
{t− 1, . . . , t−m}. Then,

|ε′t| = |(f ′ ∗ w)t + (h̃′ ∗ a)t − (d′ ∗ e)t|
≤ |(f ′ ∗ w)t + (h̃′ ∗ a)t| + |(d′ ∗ e)t|
≤ |(f ′ ∗ w)t + (h̃′ ∗ a)t| + 2‖d′‖∞

(21)

The classical MMSE design approach is to select (f ′, d′)
to minimize the mean-square-error, under the assump-
tion of perfect decisions (e = 0),

MSE = E‖(f ′ ∗ w)t + (h̃′ ∗ a)t‖2
2 (22)

Under the assumption that wt is gaussian IID with vari-
ance σ2

w and at is gaussian IID with unity variance, the
MMSE design is obtained from:

min
f ′,d′

σ2
w‖f ′‖2

2 + ‖g ∗ f ′ − λδ ∗ (1 + d′)‖2
2 (23)

Since any choice of hδ > 0 does not effect the SER,
the DFE taps are re-scaled so that hδ = 1. Thus, from
the optimum solution (f ′, d′), set f = f ′/h′

δ, d = d′/h′
δ

with h′
δ = (g ∗ f ′)δ.

To incorporate the possibility of one error over the tap
length of the decision filter D(λ), following (21) sug-
gests the design optimization:

min
f ′,d′

‖d′‖∞≤γ

σ2
w‖f ′‖2

2 + ‖g ∗ f ′ − λδ ∗ (1 + d′)‖2
2 (24)

This approach penalizes the largest decision filter coef-
ficient by introducing the d-tap constraint γ. If γ = ∞
then we return to the MMSE design. As γ decreases
we sweep out new designs. Simulations of these de-
signs (section 5) show modest robustness gains to cer-
tain types of error propagation environments.

1If it turns out that hδ < 0, then replace the quantizer, in the
binary case only, with Q(x) = −sgn(x).



Another interpretation is that this approach models er-
ror propagation as if it were an exogenous noise, e.g.,
e is a random sequence with an infrequent single error,
at most one error possibly every m samples. (Recall m
is the decision tap length). Proceeding in this way we
can also consider other models of e. For example, if we
assumed that e was white Gaussian with variance σ2

e ,
then DFE designs could be obtained from,

min
f ′,d′

σ2
w‖f ′‖2

2 +‖g ∗ f ′−λδ ∗ (1 +d′)‖2
2 +σ2

e‖d′‖2
2 (25)

In this case σe is a design variable which weighs the
effect of constraining the d′-taps under the two-norm.
In a manner similar to the previous formulation (24), if
σe = 0 then we return to the MMSE design and as σe

increases we sweep out new designs. Simulations with
this approach are also examined in section 5.


-ary alphabet
In the 
-ary case, A = {±1,±3, . . . ,±(
− 1)}, and
hence,

ât = arg min
α∈A

|hδat−δ + εt − α| (26)

The choice of hδ is now not arbitrary in magnitude.
Since the quantizer will return the correct symbol if
and only if

|(hδ − 1)at−δ + εt| ≤ 1 (27)
it follows that hδ = 1 is required, otherwise even when
εt = 0 there would be an error. But setting hδ = 1
is equivalent to the procedure proposed for the binary
case.

Multiple errors
We can go a bit further and account for the possibility of
more than one error over the tap length of the decision
filter D(λ). Say there are k ≤ m errors. Then the worst
case is,

|(d ∗ e)t| ≤ ‖e‖∞
k∑

i=1

|d(i)| (28)

where
{
d(1), . . . , d(m)

}
are the impulse response coeffi-

cients of D(λ) ordered by magnitude, that is,

|d(1)| ≥ |d(2)| ≥ · · · ≥ |d(m)| (29)

Hence, we can also consider the design obtained from
the optimization,

min
f ′,d′

∑k

i=1
|d(i)|≤γ

σ2
w‖f ′‖2

2 + ‖g ∗ f ′ − λδ ∗ (1 + d′)‖2
2 (30)

5 Simulation examples

In this section, we evaluate the performance of the fol-
lowing three DFE designs based on the criteria dis-
cussed in the previous sections: Two of them are mini-
mizing the MSE cost function (23)

J = σ2
w‖f ′‖ + ‖g ∗ f ′ − λδ ∗ (1 + d′)‖2

2

with the following constraints on the normalized deci-
sion taps d′:

i) one-tap constraint (24):

|d′i| < d′max, for all i

ii) two tap constraint (30):

|d′i| + |d′j | < d′max, for all i, j, i �= j

This is equivalent to (30) with k = 2.

For comparison we also consider the cost function (25).

iii) 
2-norm DFE:

J ′ = J + σ2
e‖d′‖2

2

For a moderate channel (Figure 1-a)) and a relatively
severe channel (Figure 1-b)), the symbol error rate
(SER) of the above three DFE designs are calculated by
simulations using 1.5× 106 of 8-PAM symbols. Table 1
presents SER for each channel and various SNR under
different tap-length settings. In each case the choice of
the design parameters d′max or σe and δ are chosen to
minimize SER from the simulations, e.g., figure 2.

Channel c1
(Nf = 20, Nd = 34)

SNR 15dB 20dB 25 dB
MMSE 0.3725 0.1197 0.0004

∞ 0.3512 0.0988 0.0003
2-tap 0.3483 0.0944 0.0003

2 0.3656 0.0973 0.0003

a) Moderate channel with properly modeled DFEs
Channel c1

(Nf = 10, Nd = 15)

SNR 15dB 20dB 25 dB
MMSE 0.4348 0.3211 0.2390

∞ 0.4180 0.3093 0.2211
2-tap 0.4109 0.2850 0.2067

2 0.4095 0.2898 0.2117

b) Moderate channel with under modeled DFEs
Channel c2

(Nf = 20, Nd = 34)

SNR 15dB 20dB 25 dB
MMSE 0.5333 0.4360 0.0130

∞ 0.4828 0.3783 0.0093
2-tap 0.4829 0.3544 0.0118

2 0.4791 0.3530 0.0137

c) Severe channel with properly modeled DFEs

Table 1: SER result of modified DFEs

These results indicate that the modified DFE designs
yield better SER than the conventional MMSE DFE
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a) Moderate Multipath Channel c1
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b) Severe Multipath Channel c2

Figure 1: Two Channel Models

design. Specifically, we can find that 2-tap constrained
DFE performs always better than 
∞ DFE, while 
2
constrained DFE tends to outperform 2-tap constrained
DFE for a severe channel and severe noise environment.
Figure 3 shows some examples of DFE taps.

6 Concluding Remarks

Assuming the channel is known, we have shown that
somewhat better DFE designs can be obtained by ac-
counting for error propagation. Standard MMSE de-
signs assume perfect decisions. The methods presented
here utilize very simple representation of the error prop-
agation. Although properly characterizing error prop-
agation is difficult, the results here motivate a deeper
analysis of typical error patterns which can be used to
form design constraint on the decision taps.
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Figure 2: SER vs. d′
max for undermodeled �∞ constrained

DFE for c2. For each d′
max (and δ) the DFE

with optimal (f, d) are simulated and SER com-
puted.
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a) MMSE DFE taps
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b) 
∞ constrained DFE taps (d′max = 0.2)
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c) 2 tap constrained DFE taps (d′max = 0.45)
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b) 
2 constrained DFE taps (σe = 3.6 × 10−3)

Figure 3: DFE taps (FFF+FBF) for channel c1 at
SNR=20dB with Nf=20 and Nd = 34


