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Abstract

Run-to-run control using static linear models is examined. Conditions are presented for stability,

(statistical) performance, and robustnessusing standard control theory. A simulation exampleshowsthe

usefulnessof themethod applied to a rapid thermal oxidation (RTO) process.

1 Int roduction

Thegoal of amanufacturing system isto producemultiplecopiesof thesameproduct, each having attributes

within specified tolerances. Product quality attributes are typically determined after theproduct ismanufac-

tured, since in most cases sensors are not available which can directly monitor all of these attributes during

the process. Moreover, during the run, the control variables, or recipe variables, are pre-set and held fixed

during the run. Different recipes can be selected to produce different products, or similar products but with

different attributes.

Therun-to-run control problem isto adjust therecipefor thenext run based on theresultsof theprevious

runssuch that theproduct quality improvesand/or yield increases, i.e., moregood product isproduced. This

has proved to be very popular in process control [3].

Previous literature on this topic considers the problem from a statistical point of view (for example, see

[1], [2], [3]). This paper describes how the recipe can be adjusted from “run-to-run” using a very simple

algorithm based on the attributes of the product produced in the previous run or runs. The algorithm is

analyzed under avariety of assumptions on thebehavior of theactual process using standard control theory.
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gram under NASA Grant No. NAG-1-1964 and NIST contract No. 50SBNB5C8517.



2 Proportional Error Control

Let t = 1;2; : : : ; denote the run number,rt 2 Rm the vector of recipe variables used during runt, yt 2Rn the

vector of product quality attributes produced at the end of runt, andet 2 Rn thenormalizedproduct quality

error, whosei-th element is defined as,

et(i) =
yt(i)�ydes(i)

ytol(i)
; i = 1; : : : ;n (1)

whereydes(i) is the i-th desired product quality attribute, andytol(i) is the associated error tolerance. The

error, written in vector form, becomes,

et = R�1(yt �ydes)

R = diag(ytol(1); : : : ;ytol(n))

(2)

The simplest choice for run-to-run control is to correct the previous recipe by an amount proportional to

the current error. Thus, for runt = 1;2; : : :, adjust the recipe according to,

rt = rnom+ut

ut = ut�1�Γet�1; u0 = 0

(3)

wherernom2Rm is the nominal recipe,ut 2Rm is the correction to the nominal recipe for runt, andΓ2Rm�n

is the control design (gain) matrix. It is important to emphasize that (2) together with (3) constitutes the

completerun-to-run algorithm. Observe also that (3) has the same form as a gradient descent optimization

algorithm.

It remains to chooseΓ and to analyze the algorithm under a variety of assumptions about howut effects

et . It will be shown that most of the widely used run-to-run algorithms are in the form of (3) for different

choices of the control design (gain) matrixΓ.

3 Static Linear Error System

In this section the run-to-run control (3) is analyzed under the assumption that the actual process can be

described by thestatic linear error system.

et = wt +Gut ; t = 0;1;2; : : : (4)

whereG2Rn�m is the matrix relating changes in error due to changes in run-to-run control parameters, and

wt 2 Rn is the vector of product quality errors, that would have been produced at the end of runt, soley due

to the nominal control,i.e.,

wt = et jrt=rnom (5)
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Note that the run numbering notation used here is different than the standard notation for sampled-data

systems wheret = 1;2; : : : refers to thesampling instants(To adhere to the sampled-data standard the error

system (2) would readet = wt +Gut�1 which might be confusing). The termstaticrefers to the fact that the

model (4) has no memory of any inputs other than the previous run,i.e., G is a constant matrix. The effect

of a time-varying, dynamic, and/or nonlinear “G” will be examined in the future.

Assuming that the actual system is given by (4), application of the run-to-run control (3) results in the

error and control (recipe correction) obeying the difference equations,

et = (In�GΓ)et�1+ ewt ; e0 = w0

ut = (Im�ΓG)ut�1�Γwt�1; u0 = 0

(6)

whereewt is the run-to-runvariation in the nominal error,

ewt = wt �wt�1 (7)

The fact that the error equation is driven by the run-to-run variationewt rather thanwt itself, means that the

effect of biases can be eliminated and slow drifts greatly reduced. For example, if

wt = b+ct+vt (8)

whereb2 Rn is a constant bias,c2 Rn is a constant drift rate, andvt 2 Rn is a zero-mean random variable,

then ewt = c+vt �vt�1 (9)

Clearly ewt is less potent thanwt , particularly if the drift is slow (smallc) and if the noise variance is small.

However, it is important to note that ifvt is a sequence of independent, identically distributed (IID) zero-

mean random variables with varianceσ2, the sequencevt � vt�1, although also zero-mean, has twice the

variance, 2σ2.

3.1 Transfer Function Representation

The system variables can also be expressed in transfer function form, with the dependent variable being the

backward shift operatorq. That is, withu0 = 0 ande0 = w0, for t = 1;2; : : : ,

et = Tew(q)wt

ut = Tuw(q)wt

(10)

where:
Tew(q) = (1�q) [In�q(In�GΓ)]�1

Tuw(q) = �q[Im�q(Im�ΓG)]�1Γ

= �qΓ [In�q(In�GΓ)]�1

(11)
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The run-to-run control algorithm (3) can also be expressed as the dynamic error controller,

ut =�K(q)et (12)

with

K(q) =
q

1�q
Γ (13)

In terms ofK(q), the transfer functions become,

Tew(q) = [I +GK(q)]�1

Tuw(q) = � [I +K(q)G]�1K(q)

= �K(q) [I +GK(q)]�1

(14)

The transfer functionK(q) has a pole at unity which immediately reveals that (3) is anintegral control law.

Hence, as is well known, provided the system is stable, the run-to-run control asymptotically eliminates the

effect of bias inwt . This will be made more precise in the sequel.

3.2 Stability

It is clear from the above transfer functions that the controlled system is internally stable if and only if then

poles of the transfer function[In�q(In�GΓ)]�1 are strictly inside the unit disc. A sufficient condition for

this is that the magnitude of the eigenvalues ofIn�GΓ are less than one,i.e.,

jλi(In�GΓ)j< 1; i = 1; : : : ;n (15)

This is also equivalent to,

j1�λi(GΓ)j< 1; i = 1; : : : ;n (16)

Thus, the system is stable if all the eigenvalues ofGΓ lie strictly inside a unit disc in the complex plane

centered at unity on the real axis. Therefore, a sufficient condition for (16) is if,

0< jλi(GΓ)j< 2; 8i = 1; : : : ;n (17)

In the scalar case (G;Γ 2 R) this condition is both necessary and sufficient becauseλi(GΓ) = GΓ. Also, in

the special case when the eigenvalues ofGΓ are all real, then the system is stable if and only if,

0< λi(GΓ)< 2; 8i = 1; : : : ;n (18)

3.3 Inverse Control

Suppose thatG in (4) is square (n= m) and invertible. AssumingG is known, examination of (6) suggests

the choice

Γ = µG�1 (19)
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whereµ2R. The run-to-run algorithm is then,

ut = ut�1�µG�1et�1 (20)

which together with (4) results in the error and control obeying the difference equations,

et = (1�µ)Inet�1+ ewt

ut = (1�µ)Imut�1�µG�1wt�1

(21)

Observe that this choice ofΓ diagonalizes the error system. In this case, the system transfer functions are:

Tew(q) =
1�q

1�q(1�µ)
In

Tuw(q) = � µq
1�q(1�µ)

G�1

K(q) =
µq

1�q G�1

(22)

The system is stable for

0< µ< 2 (23)

In the special case whenµ= 1, the difference equations reduce to,

et = ewt

ut = �G�1wt�1

(24)

with transfer functions,
Tew(q) = (1�q) In

Tuw(q) = �q G�1

K(q) =
q

1�q G�1

(25)

3.4 Pseudo-inverse control

When the number of controlsm exceedes the number of errorsn, set

Γ = µG†

G† = GT(GGT)�1

(26)

whereG† which is the so-calledright psuedo-inverseof G. In this case, the above is the minimum normΓ
such thatGΓ = µIn, i.e.,

µG† = argmin
Γ
kΓk subject toGΓ = µIn (27)
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Observe that(GGT)�1 exists if and only ifG has full rank, that is, the rank ofG is n. Also, if G is square,

thenΓ = µG�1 as in (19). In casen is larger thanm, a dual result holds using the left pseduo inverse.

With Γ from (26), the error and control satisfy the difference equations,

et = (1�µ)Inet�1+ ewt

ut = (1�µ)Imut�1�µG†wt�1

(28)

Equivalently, the system transfer functions are:

Tew(q) =
1�q

1�q(1�µ)
In

Tuw(q) = � µq
1�q(1�µ)

G†

(29)

The statistical performance measures are identical.

4 Statistical Performance Analysis

Suppose that the sequence of uncorrected errorsfw1;w2; : : :g is a realization of an independent identically

distributed (IID) random variable with meanb2 Rn and covarianceσ2In, that is,

Efwtg= b; covfwtg= σ2In; t = 1;2; : : : (30)

Assuming the system is stable,i.e., (23) holds, it follows from standard calculations that for allt � 1,

Efetg= 0; covfetg= (γeσ)2 In

Efutg=�G�1b; covfutg= (γuσ)2(GTG)�1

(31)

where(γe;γu) depend onµ, i.e., for 0< µ< 2,

γe =

r
2

2�µ

γu =
q µ

2�µ

(32)

Given the above results, RMS statistics will be used to evaluate performance.

The following measures of performance are based on the RMS of individual elements of the error and

control sequences. The indicesi; j refer to thei-th element of the error vector and thej-th element of the

control.

� The RMS values of the error with and without run-to-run control:

rmsfwt(i)g ; rmsfet(i)g ; i = 1; : : : ;n (33)
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� The ratio of RMS control variation about its expected value:

ηu( j) =
rmsfut( j)�Efut( j)gg

jEfut( j)g j ; j = 1; : : : ;m (34)

Another important measure of performance is the system time constant,

ttc =�1= logj1�µj (35)

Using (30), (31), and (32) gives:

rmsfwt(i)g =
p

b(i)2+σ2; i = 1; : : : ;n

rmsfet(i)g =

r
2σ2

2�µ ; i = 1; : : : ;n

(36)

ηu( j) =

 
µ

2�µ

(GTG)�1
j j

(G�1b=σ)2
j

!1=2

; j = 1; : : : ;m

In general, asµ! 0, rmsfeg ! σ, which is the smallest possible RMS error, but the time constant

ttc ! ∞.

In the scalar case,n= m= 1, and hence,

rmsfwtg =
p

b2+σ2

rmsfetg =

r
2σ2

2�µ

(37)

and

ηu =
1

jb=σj
�

µ
2�µ

�1=2

(38)

As an example, ifjbj= 2σ thenrmsfwg= 2:2σ and:

µ= 1 =) rmsfeg= 1:4σ ηu = :5 ttc = 0

µ= :5 =) rmsfeg= 1:15σ ηu = :3 ttc = 1:44

µ= :1 =) rmsfeg= 1:05σ ηu = :2 ttc = 9:5

Although the RMS error can be reduced from 2:2σ to 1:05σ with µ= :1, the time constant is then about 10

runs. Thus, the improvement would not be realized for at least 3 time constants, or about 30 runs. A better

compromise would beµ= :5 which gives a similar RMS reduction but with a time constant of 1.44 runs.

Observe that even forjbj as small as:5σ, it is still possible to reduce the uncorrected RMS error from

1:20σ to 1:05σ by settingµ= :1. Again, this will only be realized after at least 30 runs.
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5 Robust Stability and Performance

Assume now thatG2 Rn�m, m> n, and has full rank. LetbG2 Rn�m be a full rank estimate ofG and letΓ
be chosen proportional to the approximate pseudo-inverse of the estimatebG,

Γ = µbG†

bG† = bGT( bGbGT)�1

(39)

Suppose that

G= (In+∆) bG (40)

where∆ 2Rn�n represents themultiplicative uncertaintybetweenG and the estimatebG. It is easily verified

that the run-to-run control (3) withQ given by (26) results in the error difference equation,

et =�∆et�1+ ewt (41)

The closed-loop transfer functions are now:

Tew(q) = (1�q)(In+q∆)�1 (42)

Tuw(q) = �qbGT( bGbGT)�1(In+q∆)�1 (43)

The system is stable if and only if the magnitude of the eigenvalues of∆ are strictly less than unity,i.e.,

jλi(∆)j< 1; i = 1; : : : ;n (44)

Since (41) is a linear difference equation, the solution foret ; t � 0 can be written explicitly as,

et = (�∆)te0+
t

∑
τ=0

(�∆)t�τ ewτ (45)

and is bounded for all boundede0 andwt if (44) holds.

A sufficient condition for stability is that

k∆k � δ < 1 (46)

A repeated application of the triangle inequality to (45) together with (46) results in,

ketk � δt ke0k+
�

1�δt

1�δ

�
max

τ
kewτk (47)

Since it is always the case thatke0k �max
τ
kwτk, it follows thatketk is bounded by,

ketk � δt max
τ
kwτk+

�
1�δt

1�δ

�
max

τ
kewτk

(48)

! (1�δ)�1max
τ
kewτk ; ast ! ∞
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Hence, the performance ratio is bounded by,

ηt � δt +

�
1�δt

1�δ

��
maxτ kewτk
maxτ kwτk

�
(49)

! (1�δ)�1
�

maxτ kewτk
maxτ kwτk

�
; ast ! ∞

Observe that the bound on the (asymptotic) performance improvement ratio is reduced from the ideal by

(1�δ).

6 Simulation Example

In this section the run-to-run control algorithm is applied to control a rapid thermal oxidation (RTO) process.

RTO is a part of Rapid Thermal Processing (RTP) for the processing of silicon dielectrics. The simulation

results in this paper are based on a previously derived physical model of a generic RTP system [4], extended

with a simplified oxidation model.

The generic RTP system geometry is shown in Figure 1, which is representative of commercial RTP

systems. The system consists of five independently powered lamps (inputs) near the top wall that form axi-

symmetric rings at radiir1,. . . , r5. The walls of the chamber are highly reflective (95%) and water-cooled.

A thick quartz window (6.35 mm) and a thinner quartz showerhead (1mm) transmit radiation from the hot

lamps at wavelengths shorter than approximately 4µm, but are opaque to radiation at longer wavelength.

The silicon wafer and guard ring are heated by this short wavelength lamp radiation. A physical model of

this nonlinear system was constructed that predicts the dynamic temperature response. Details of this model

are described in [4]. Five evenly distributed temperature sensors form the measured outputs of this system.

For this example we used a very simple oxidation model, which was taken from [5] . We assume that

theoxidation rate, Rox, is given by:

Rox = Roexp
�Ea
kT [Å=second];

with Ro = 4:60e5Å/second the oxidation rate constant,Ea = 1:44 eV the activation energy, andk= 8:62e-5

eV/K the Boltzmann constant. The thickness of the silicon film,tox, is obtained by integrating the rate w.r.t.

time.

In reference [6] temperature control design was performed for the generic RTP model, showing tight

temperature control using feedback and feedforward. Figure 2(a) shows a typical reference temperature

profile for an oxidation process: heating a wafer from room temperature (25� C) to 1050� C in about 10

seconds, then soak the wafer for about 30 seconds, and finally let the wafer cool-off and take it out. This

figure also shows the measured output response, while Figure 2(b) shows the corresponding control input.

Figure 2(c) and (d) show the wafer temperature non-uniformity and the oxidation film thickness of 21 wafer
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Figure 1: Schematic of the Generic RTP Chamber.
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Figure 2: Simulated RTP tracking response; (a) reference rampr and measured wafer temperaturey; (b)

power inputu to RTP system, normalized to 1; (c) wafer temperature non-uniformity for 21 nodes on wafer;

each line represents the distance from the average wafer temperature; (d) oxide thickness for each wafer

node.

nodes, respectively. Note that the oxidation growth is negligible for temperatures below 800� C, hence the

film thickness after 80 seconds can be considered to be the final thickness.

For run-to-run control we choose the film thickness of the 21 wafer nodes at the end of the oxidation

process (i.e. at t = 80 seconds) as the vector of product quality attributes. The 5 soak-temperature setpoints

with nominal values equal to 1050� C were chosen as the vector of recipe variables. We assumed a desired

film thickness of 50Å for all wafer nodes, and defined the product quality error as:

e(i)
:
= 50� tox(i) [Å]; i = 1; : : : ;21:

As the number of product quality attributes (n = 21) is greater than the number of recipe variables (m = 5),

we computed theleft pseudo inverse:G† = (GTG)�1GT , and set the controllerΓ = µG† for different values
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of µ. With this gain matrix we implemented the run-to-run algorithm as:

et = f (ut ;wt); wt 2N (1;1); t = 1; : : : ;60

ut =

8><>:
0; t = 1; : : : ;20

ut�1�Γet�1; t = 21; : : : ;60

(50)

with f (ut ;wt) a nonlinear function relatingut andwt to et . Thus, for the first 20 runs, no run-to-run control

is applied.

Figure 3(a) shows the oxide thickness before (+) and after (*) run-to-run control, together with the

Figure 3: (a) Film thickness for each wafer node before (+) and after (*) run-to-run control, together with

desired thickness (o); (b) RMS values of error from desired thickness for different values ofµ.

desired thickness (o) of 50̊A. The added value of run-to-run control is clearly visible: the bias w.r.t. the

desired thickness has been removed, and the peak-to-peak error has been reduced. Note that it is impossible

to reduce the error from the desired thickness to zero for all 21 nodes, as only 5 recipe variables are available.

Figure 3(b) shows the RMS value of the error from the desired thickness for different values ofµ, with RMS

defined as:

RMS
:
=

1
21

s
21

∑
i=1

(50� tox(i))2:

For µ= 1, the run-to-run algorithm converges after 2 runs, whereas forµ= 0:1 it takes about 30 runs. Note

that the final RMS value of approximately 0.058 is independent of the value ofµ, but depends on the unequal

number of recipe variables w.r.t. product quality variables.

Figure 4 shows the effect of different values ofµat different wafer nodes. This figure shows the trade-off

12



Figure 4: Error from desired film thickness for different wafer nodes and different values ofµ: (a) center

node; (b) 7th node; (c) 14th node; (d) edge node.

between fast convergence and reduced variance: decreasingµ gives reduced variance after convergence, but

takes more runs.

7 Conclusions

We have analyzed a simple run-to-run controller for static systems that can be viewed as a special case of

standard integral control. Stability and statistical performance results were developed. The results were

applied to an RTP example, showing the usefulness of the algorithm by enforcing convergence of wafer

oxide thickness to a desired thickness.
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