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Abstract

Run-to-run contrd using static linear modek is examined Conditiors are presentd for stability,
(statistica) performanceand robustnes using standad contrd theory. A simulatian exampke showsthe
usefulnesof the methal applied to arapid thermd oxidation (RTO) process.

1 Introduction

Thegod of amanufacturig systen isto produe multiple copies of the same product ead having attributes
within specifi@l tolerancesProdud quality attributes are typically determind after the produd is manufac-
tured since in mod case sensos are not available which can directly monitar all of the attributes during

the process Moreover, during the run, the contrd variables or recipe variables are pre-s¢ ard held fixed
during the run. Differert recipes can be selectd to produe differert products or similar producs but with

differert attributes.

Therun-to-run contrd problem isto adjug the recipe for the next run basel on the resuls of the previous
runs sud tha the produd quality improves and/a yield increasesi.e., more goad produd is produced This
has proved to be very popula in proces contrd [3].

Previous literature on this topic consides the problen from a statisticd point of view (for example see
[1], [2], [3]). This pape describs how the recipe can be adjuste from “run-to-runi’ using a very simple
algorithm basel on the attributes of the produd producel in the previous run or runs The algorithm is
analyzel unde avariety of assumptios on the belavior of the actud proces using standad contrd theoy.

*Thiswork is supporté by Defene Advancel Researbk Projecs Agercy (DARPA)’s applied computationemathematis pro-
gram unde NASA Grart No. NAG-1-1961 and NIST contra¢ No. 50SBNB5C8517.



2 Proportional Error Control

Lett =1,2,..., denote the run number, € R™ the vector of recipe variables used during tup € R" the

vector of product quality attributes produced at the end oftyamde, € R" the normalizedproduct quality

error, whose-th element is defined as,

W) —Yaed)) g )
Yeol (i)

whereyqedi) is thei-th desired product quality attribute, agg,(i) is the associated error tolerance. The

error, written in vector form, becomes,

a(i) =

a = R Y —Ydes
(2)
R = diag(Ywi(1),...,Yw0l(N))

The simplest choice for run-to-run control is to correct the previous recipe by an amount proportional to
the current error. Thus, for run=1,2,.. ., adjust the recipe according to,

- = TInom+U
3)
W = Ua1—-Tla, uw=0

wherern,om € R™is the nominal recipay € R™is the correction to the nominal recipe for iymandlr € R™"

is the control design (gain) matrix. It is important to emphasize that (2) together with (3) constitutes the
completerun-to-run algorithm. Observe also that (3) has the same form as a gradient descent optimization
algorithm.

It remains to choosE and to analyze the algorithm under a variety of assumptions aboutiheffects
&. It will be shown that most of the widely used run-to-run algorithms are in the form of (3) for different
choices of the control design (gain) matfix

3 Static Linear Error System

In this section the run-to-run control (3) is analyzed under the assumption that the actual process can be
described by thetatic linear error system

a=w+Gu, t=012... (4)

whereG € R"™*™Mis the matrix relating changes in error due to changes in run-to-run control parameters, and
w; € R"is the vector of product quality errors, that would have been produced at the endtp$aley due
to the nominal controli.e.,

W = Q||'t:|'nom (5)
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Note that the run numbering notation used here is different than the standard notation for sampled-data
systems where= 1,2, ... refers to thesampling instant¢To adhere to the sampled-data standard the error
system (2) would read = w; + Gu_; which might be confusing). The terstaticrefers to the fact that the

model (4) has no memory of any inputs other than the previous.einG is a constant matrix. The effect

of a time-varying, dynamic, and/or nonlinea®™will be examined in the future.

Assuming that the actual system is given by (4), application of the run-to-run control (3) results in the
error and control (recipe correction) obeying the difference equations,

e = (Ih—GMNa_1+W, e=Wwy

(6)
U = (Im—TGu-1—-Tw1, U =0
whereWw, is the run-to-rurvariation in the nominal error,
We = Wy —We—1 (7)

The fact that the error equation is driven by the run-to-run variatiorather tharnw; itself, means that the
effect of biases can be eliminated and slow drifts greatly reduced. For example, if

W = b+ct+ v (8)

whereb € R" is a constant biag, € R" is a constant drift rate, angl € R" is a zero-mean random variable,
then
W = C+W — V-1 )

Clearlyw, is less potent than, particularly if the drift is slow (smalt) and if the noise variance is small.
However, it is important to note that ¥ is a sequence of independent, identically distributed (IID) zero-
mean random variables with variangé, the sequence; — v_1, although also zero-mean, has twice the
variance, 2.

3.1 Transfer Function Representation

The system variables can also be expressed in transfer function form, with the dependent variable being the
backward shift operatay. That is, withug = 0 andey =wp, fort =1,2,...,

a = Tew(q)W
(10)
U = Tuw(q)W
where:
Te(@ = (1—=q)[ln—g(ln—GM)]™
Tw(@ = —qllm—lm—TG)] T (11)

= —al[ln—q(ln—GM)] ™
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The run-to-run control algorithm (3) can also be expressed as the dynamic error controller,

w = —K(g)& (12)
with
K@) = 2T (13)
In terms ofK(q), the transfer functions become,
Tew(@) = [1+GK(@)™
To(@) = —[+K(@)G] 'K(o) (14)

= —K(q)[I +GK(a)]™*

The transfer functiok (g) has a pole at unity which immediately reveals that (3) ignéegral control law
Hence, as is well known, provided the system is stable, the run-to-run control asymptotically eliminates the
effect of bias inw;. This will be made more precise in the sequel.

3.2 Stability

It is clear from the above transfer functions that the controlled system is internally stable if and only if the
poles of the transfer functioft, — q(l, — GI)]~* are strictly inside the unit disc. A sufficient condition for
this is that the magnitude of the eigenvalue$.of GI" are less than onég,,

Ai(ln—GMN)|<1, i=1...,n (15)

This is also equivalent to,
IL-Ai(GMN)| <1, i=1,...,n (16)

Thus, the system is stable if all the eigenvalue<sbflie strictly inside a unit disc in the complex plane
centered at unity on the real axis. Therefore, a sufficient condition for (16) is if,

0< |A(GIN)| <2, Vi=1,...,n 17

In the scalar caseX,I" € R) this condition is both necessary and sufficient becau&l") = GI'. Also, in
the special case when the eigenvalue&bfare all real, then the system is stable if and only if,

0<Aj(GrN) <2, Vvi=1,...,n (18)
3.3 Inverse Control
Suppose thab in (4) is squarer{ = m) and invertible. Assumings is known, examination of (6) suggests
the choice
F=pG+? (19)
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wherep € R. The run-to-run algorithm is then,
U =t-_1—HG 'a_1 (20)
which together with (4) results in the error and control obeying the difference equations,

a = (I-whea_1+W
(21)

h = (I-Wlnte 1—pG w3

Observe that this choice 6fdiagonalizes the error system. In this case, the system transfer functions are:

1
Tew(d) = qu_uﬂn

Tuw(@) = —% G1 (22)
K@ = 196"
The system is stable for
O<pu<?2 (23)

In the special case when= 1, the difference equations reduce to,

g = W
(24)
h = —Glw_,
with transfer functions,
Tew(@ = (1-0)ln
K@ = 1746
3.4 Pseudo-inverse control
When the number of controfa exceedes the number of errorsset
r = pG'
(26)

Gt = @7 (GGT)fl

whereG" which is the so-calledight psuedo-inversef G. In this case, the above is the minimum ndfm
such thatGlI' = pl,, i.e,,
uG' = arg min| || subject toGT" = ply (27)
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Observe tha(GGT)—l exists if and only ifG has full rank, that is, the rank @ is n. Also, if G is square,
thenl =Gt as in (19). In casa s larger tharm, a dual result holds using the left pseduo inverse.

With I from (26), the error and control satisfy the difference equations,

g = (I-plhea_1+W

(28)
W = (1—Wlnk 1—HG'W 1
Equivalently, the system transfer functions are:
_ 1-q
Tew(q) = T ql-p In
(29)
- _ Hq T

The statistical performance measures are identical.

4 Statistical Performance Analysis

Suppose that the sequence of uncorrected efsgrswo, ...} is a realization of an independent identically
distributed (1ID) random variable with medne R" and covariance?l,, that is,

E{w}=b, coviw}=0%, t=12... (30)
Assuming the system is stableg., (23) holds, it follows from standard calculations that fortaH 1,

E{a}=0, cov{a}=(v0)?In

(31)
E{u}=-G'b, cov{u}=(w0)*G'G)*
where(Ye, Yu) depend ory, i.e., for 0 < p< 2,
Ye = 2—3 m
(32)
Yu = QTM

Given the above results, RMS statistics will be used to evaluate performance.

The following measures of performance are based on the RMS of individual elements of the error and
control sequences. The indiceg refer to thei-th element of the error vector and thh element of the
control.

e The RMS values of the error with and without run-to-run control:

rms{w (i)}, rms{a(i)}, i=1,...,n (33)



e The ratio of RMS control variation about its expected value:

_ rms{u(j) —E{w(j)}}

Ewqy 0 Theem (34

Nu(j)

Another important measure of performance is the system time constant,

tic = —1/log|1— 4| (35)
Using (30), (31), and (32) gives:
rms{w(i)} = /b(i)2+0% i=1...,n
(36)
rms{g(i)} = 202 i_1 ..n
ﬁ, g vy
o w @oF
nu(])_<2_u(Glb/o_)12 ,J—l,...,m

In general, agt — 0, rms{e} — o, which is the smallest possible RMS error, but the time constant
ttc —r 00,

In the scalar cas&= m= 1, and hence,

rms{w} = vb2+02
2
ms{a} = ‘/—ZZEM
/

b

As an example, ifb| = 20 thenrms {w} = 2.20 and:

(37)

and

H=1 = mms{e}=140 nu=.5 t=0
u=.5 = rmms{e}=115% n,=.3 t=144
u=.1 = rms{e}=105% ny=.2 t,=95

Although the RMS error can be reduced fror@@to 1.050 with p= .1, the time constant is then about 10
runs. Thus, the improvement would not be realized for at least 3 time constants, or about 30 runs. A better
compromise would ba = .5 which gives a similar RMS reduction but with a time constant of 1.44 runs.

Observe that even fgb| as small as5g, it is still possible to reduce the uncorrected RMS error from
1.200 to 1.050 by settingu=.1. Again, this will only be realized after at least 30 runs.



5 Robust Stability and Performance

Assume now thaG € R™™ m> n, and has full rank. LeG € R"™™ be a full rank estimate o and letl
be chosen proportional to the approximate pseudo-inverse of the estimate

r = uGt
(39)
Gf = GN(GG")?
Suppose that
G=(In+0)G (40)

whereA € R™" represents theultiplicative uncertaintypetweerG and the estimaté. It is easily verified
that the run-to-run control (3) witl) given by (26) results in the error difference equation,

& =—0a_1+W (41)
The closed-loop transfer functions are now:

Teu® = (1-0)(Int+ad)™" (42)

Tun(@) = —0GT(GGT) *(In+a)™ (43)
The system is stable if and only if the magnitude of the eigenvalu@saoé strictly less than unity,e.,
(b)) <1, i=1,...,n (44)
Since (41) is a linear difference equation, the solutiorgfpt > 0 can be written explicitly as,
a=(-0) e+ t%(—A)HWT (45)
=
and is bounded for all boundeg andw if (44) holds.
A sufficient condition for stability is that
1A <d<1 (46)

A repeated application of the triangle inequality to (45) together with (46) results in,
t

1-9%

Joil <8 oo+ (3= ) maxil @7)

Since it is always the case thgy|| < mTawaTH, it follows that||& || is bounded by,

t _
ol < S maxiwl+ (1=

) maxiii|
(48)

- (1-35)71 max|[Wi|, ast — o
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Hence, the performance ratio is bounded by,
1-38 Y\ [ max |||l
< 8+ (5 ) (Faciwt )
e = 1-5 ) \ max [[w

- (1-91 Mma || ast — o
max [wel| /'’

(49)

Observe that the bound on the (asymptotic) performance improvement ratio is reduced from the ideal by
(1-9).

6 Simulation Example

In this section the run-to-run control algorithm is applied to control a rapid thermal oxidation (RTO) process.
RTO is a part of Rapid Thermal Processing (RTP) for the processing of silicon dielectrics. The simulation
results in this paper are based on a previously derived physical model of a generic RTP system [4], extended
with a simplified oxidation model.

The generic RTP system geometry is shown in Figure 1, which is representative of commercial RTP
systems. The system consists of five independently powered lamps (inputs) near the top wall that form axi-
symmetric rings at radiis,.. ., rs. The walls of the chamber are highly reflective (95%) and water-cooled.

A thick quartz window (6.35 mm) and a thinner quartz showerhead (1mm) transmit radiation from the hot
lamps at wavelengths shorter than approximateim dbut are opaque to radiation at longer wavelength.

The silicon wafer and guard ring are heated by this short wavelength lamp radiation. A physical model of
this nonlinear system was constructed that predicts the dynamic temperature response. Details of this model
are described in [4]. Five evenly distributed temperature sensors form the measured outputs of this system.

For this example we used a very simple oxidation model, which was taken from [5] . We assume that
the oxidation rate Ry, is given by:

Rox= Roexp®™  [A/second,

with Ry = 4.60e5A/second the oxidation rate constast,= 1.44 eV the activation energy, akd= 8.62e-5
eV/K the Boltzmann constant. The thickness of the silicon fijn,is obtained by integrating the rate w.r.t.
time.

In reference [6] temperature control design was performed for the generic RTP model, showing tight
temperature control using feedback and feedforward. Figure 2(a) shows a typical reference temperature
profile for an oxidation process: heating a wafer from room temperatufeGfo 1050 C in about 10
seconds, then soak the wafer for about 30 seconds, and finally let the wafer cool-off and take it out. This
figure also shows the measured output response, while Figure 2(b) shows the corresponding control input.
Figure 2(c) and (d) show the wafer temperature non-uniformity and the oxidation film thickness of 21 wafer
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Figure 1. Schematic of the Generic RTP Chamber.
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(a) Measured output response - ramp 100 ‘C/sec (b) Normalized power input
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Figure 2: Simulated RTP tracking response; (a) reference raamgl measured wafer temperatyte(b)

power inputu to RTP system, normalized to 1; (¢) wafer temperature non-uniformity for 21 nodes on wafer;
each line represents the distance from the average wafer temperature; (d) oxide thickness for each wafer
node.

nodes, respectively. Note that the oxidation growth is negligible for temperatures bel&dw 8b6nce the
film thickness after 80 seconds can be considered to be the final thickness.

For run-to-run control we choose the film thickness of the 21 wafer nodes at the end of the oxidation
processi(e.att = 80 seconds) as the vector of product quality attributes. The 5 soak-temperature setpoints
with nominal values equal to 105@€ were chosen as the vector of recipe variables. We assumed a desired
film thickness of 504 for all wafer nodes, and defined the product quality error as:

ei) =50—tx(i) [A], i=1,...,2L

As the number of product quality attributes (n = 21) is greater than the number of recipe variables (m = 5),
we computed théeft pseudo inverseG' = (GTG)~1GT, and set the controlldf = uG' for different values
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of W With this gain matrix we implemented the run-to-run algorithm as:

& = f(Ut,Wt), W € N (171)a t= 17760
0, t=1,...,20 (50)

Ut,]_—rQ,]_, t:21,...,60

with f(u,w) a nonlinear function relating: andw; to . Thus, for the first 20 runs, no run-to-run control
is applied.

Figure 3(a) shows the oxide thickness before (+) and after (*) run-to-run control, together with the

(a) Film thickness (b) RMS values of film thickness
50.5 a 0.35 N’M
50 - GROCAOOOOO 03 E
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< o
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|
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48 B 0.1 B
n=1.0
475 1 1 1 1 1 1 005 1 1 1 1 1
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Wafer node Run number #

Figure 3: (a) Film thickness for each wafer node before (+) and after (*) run-to-run control, together with
desired thickness (0); (b) RMS values of error from desired thickness for different valpes of

desired thickness (0) of 58. The added value of run-to-run control is clearly visible: the bias w.r.t. the
desired thickness has been removed, and the peak-to-peak error has been reduced. Note that it is impossible
to reduce the error from the desired thickness to zero for all 21 nodes, as only 5 recipe variables are available.
Figure 3(b) shows the RMS value of the error from the desired thickness for different valuesittf RMS

defined as:

1 & :
RMS = 51 iZ‘(SO—tOX(l))Z.
Forpu = 1, the run-to-run algorithm converges after 2 runs, whereag f00.1 it takes about 30 runs. Note
that the final RMS value of approximately 0.058 is independent of the valuebat depends on the unequal

number of recipe variables w.r.t. product quality variables.

Figure 4 shows the effect of different valueguadt different wafer nodes. This figure shows the trade-off
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Figure 4: Error from desired film thickness for different wafer nodes and different valyes(aj center
node; (b) 7th node; (c) 14th node; (d) edge node.

between fast convergence and reduced variance: decreagives reduced variance after convergence, but
takes more runs.

7 Conclusions

We have analyzed a simple run-to-run controller for static systems that can be viewed as a special case of
standard integral control. Stability and statistical performance results were developed. The results were
applied to an RTP example, showing the usefulness of the algorithm by enforcing convergence of wafer

oxide thickness to a desired thickness.
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