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Abstract 2 Epitaxial Growth Models 

This paper addresses the modeling and control of 
epitaxial growth of III-V semiconductor material by 
Molecular Beam Epitaxy. To reliably achieve the re- 
quired features, processing must use fundamental un- 
derstanding of the atom-by-atom assembly of these 
structures and careful feedback design. One problem 
is to develop a model relating morphology, sensor vari- 
ables, and control variables. Another is to design robust 
feedback for achieving a desired surface morphology. A 
novel new model is developed and presented here as well 
as modifications to a previously published model. Feed- 
back design using both models is conducted; simulation 
results are shown. 

1 Introduction 

The quality of quantum heterostructure devices de- 
pends crucially on the ability to control interface mor- 
phology during growth. In layer-by-layer growth mode, 
oscillations in the specular intensity of the reflection 
high energy electron diffraction (RHEED) pattern are 
often observed and have been correlated to the instan- 
taneous density of steps on the surface [l, 21. This al- 
lows for the possibility of in situ monitoring and control 
of surface morphology during growth. The basic pro- 
cesses in layer-by-layer epitaxial growth are deposition 
and diffusion on the surface followed by the subsequent 
nucleation, growth, and coalescence of islands. 

The control problem here is to grow a specified number 
of layers while meeting a specified “roughness” crite- 
ria expressed in terms of RHEED. Figure 1 shows the 
MBE chamber at the HRL Laboratories which is the 
experimental facility for this research. 

Existing models for epitaxial growth are of three types. 

3. 

Atomistic kinetic models [3] describe growth 
through rates for various atomistic process such 
as diffusion of adatoms and attachment of atoms 
to and from steps or islands. Kinetic Monte Carlo 
(KMC) methods are then used to translate these 
rates into realistic simulations of growth. 

Continuum models, including the Villain equation 
[4] and island dynamics models [6, 51, describe 
growth by a set of PDEs for various field quanti- 
ties, such as adatom density p(t,x) , e.g., 

8P 

at 

= F+DV2p-$ 

(1) 
dN 
dt = D avg,(p2) 

where t is time, x the planar spatial coordinate, 
F(t, X) is the impinging flux, D the diffusion coef- 
ficient, and N is the number of nucleated islands. 
Typically, p(t, x) = 0 at the island boundaries 
and tracking the boundaries can be accomplished 
using the level set method, [6]. 

Bulk models describe growth through a set of 
scalar quantities, which are averages over the spa- 
tial domain. At present, the primary examples of 
a bulk model are rate equations [7], since they de- 
scribe the growth through the number density nk 

for islands of size Ic. They can describe the fea- 
tures of precoalescent growth of a single layer and 
provide qualitative information and understand- 
ing, such as scaling properties of the growth. 
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3 Morphology Variables 

Two of the important morphology variables are the step 
edge density, 

q = island perimeter per unit area 

and the couerage, 

8 = average height per lattice 
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Theoretical and experimental studies have shown that 
RHEED measures q after a linear transformation. 
Studies are under way to determine the relation be- 
tween q and the PE (photoemission) sensor. The vari- 
ables that strongly effect the layer growth are the sub- 
strate temperature and adatom flux. Scaling laws show 
that, these combine in the growth variable R = DfF, 
which is the inverse Peclet number and is typically very 
large, e.g., R 2 104. Here D is the diffusion coefficient 
which depends on the substrate temperature. 

Figure 2 shows step edge density for constant flux 
F = .25 monolayers/sec and varying D/F as a func- 
tion of coverage, 0, which in this case is proportional to 
deposition time, i.e., 0 = Ft. 

In the MBE reactor, it is not possible to rapidly change 
the diffusion D over the time period of typical 5-10 
monolayer growth because of the slow thermal dynam- 
ics of the substrate. Hence, substrate temperature is 
useful as a “run-to-run” control variable. Flux, can be 
rapidly changed by adjusting the effusion cell cracker 
valves or shutters, and more slowly changed by control- 
ling the cell temperature. Hence, the growth variable 
R = D/F is the effective control variable through flux. 
As seen in figure 2, a change in flux will effect the depo- 
sition time to achieve a desired coverage, i.e., decreasing 
flux increases the deposition time to reach a coverage 
goal and increases D/F, thereby lowering the step edge 
density. 

If the flux, F, and diffusion, D, are constant, then for 
integer layers n = 1,2,. . . such that B(t,) = n, 

l/(tn - t,pl) = F (2) 

and many simulation runs show that the average step 
edge density over one layer depends only on R, that is, 

1 

J’ 

t,* 

tn - L-1 t,,-l 
q(t) dt = d(R) (3) 

In addition, at the n-th layer, 

q(L) = Q (n, R) (4) 

In figure 3, the upper plot shows how q(&) varies with n 
and R. The lower plot shows the function d(R). Hence, 
for slowly varying (F, D), we can draw the following 
conclusions: 

l {q(t) 1 t,-1 < t 5 tn} t-) (F,R) is a reduced 
growth model 

l (F, R) can be estimated from measurement of 
{q(t) I L-1 5 t I &I 1 

l (F, R) can be controlled (layer-to-layer) to obtain 
desired density at coverage n, 

qdes = Q (n, Rdes) 

This leads to the following 

Morphology model 

q(t) = Q(W), R(t)) 

R(t) = D/F(t) 
d(t)/& = F(t) 

(5) 

where Q(e, R) is an algebraic “table look-up” from 
static KMC model runs over (0, R). Spline interpolation 
fills table as (d(t), R(t)) evolves. Simulation studies re- 
veal that the transient error between the above reduced 
model and the KMC model is negligible for slow flux 
variation. 

For this model we report on using only the flux, F(t), as 
the control. However, the flux depends on the effusion 
cell thermal and valve dynamics. A linear approxima- 
tion is given by the following: 

Effusion cell model 

T dF(t)/dt = -F(t) + F,(t), F,(t) > 0 

where r is the “cool-down” time constant (X 40 set), 
and F,(t) is the heater actuation. The uncertainties in 
this system are: 

initial flux: F(0) is unknown because before a run 
begins the cell is shuttered closed, and the surface 
temperature builds up 

diffusion: D depends on wafer surface tempera- 
ture, which is controlled, but can vary. 

A detailed discussion of effusion cell modeling and con- 
trol is given in [8]. 

4 Layer-to-Layer Control 

Controlling the growth from layer to layer gives rise to 
a discrete-time controller. The strategy is to hold the 
flux heater command, F,(t), constant over each layer. 
Thus, 

F,(t) = (Fc),, k-1 5 t < tn 

F(L) = W-lU) + (1 - +Fc)n 
a n = exp ( - (&I - L-1)/T) 

(6) 

Using measurements of step edge density, q(t), we com- 
pute estimates of the time to complete a layer, t,, the 
average flux, F,, and the growth variable, R, as fol- 
lows: 



growth variable estimates (via q(t)) 

t:, = {t I q(t + 6) - n(t) > 0, q(t) - q(t - 4 < 01 

k = l/(L - 2L-l) 

Ii, = d-l (k J,“,;-, q(t) dt) 

(7) 
The parameter 6 sets the estimation error. 

A control can be designed to regulate either the flux, 
F, or the growth variable, R. Consider, for example: 

layer-to-layer control algorithm 

(Fc), = sat 
1 

(FcL1 + x(-G - an&-1 
)I 

ET2 = (Fref)n - I’, 

1 

Fdes F-control 

(Fref)n, = 
(&/&es) fin R-control 

(8) 
The parameter 7% sets the closed-loop bandwidth. 

Simulations of the R-control under perturbations in ini- 
tial flux and diffusion are shown in figure 9. The con- 
trolled system is able to almost recover performance 
to the ideal (unperturbed) growth. F-control was not 
effective in this case. 

5 A Mass Transport Model 

We now present a bulk model called the Mass Transport 
Model (MTM) and show some control results for this 
model. We modified a model presented in [9] and made 
the mass transport coefficients a function of tempera- 
ture. Temperature translates roughly to the diffusion 
coefficient described earlier. The model has one state 
per layer, 8i which is the coverage on the ith layer. The 
differential equation for each layer is 

fen = 4en-1 - en) + ~(wh+~ - en+2)(en-1 - 0,) 

-awn - en+d(k2 - 6-d 

Inputs to the model are incident flux, J, and tempera- 
ture, T. The model allows for adatoms to jump down 
a level. The jump rate from layer n + 1 to n is propor- 
tional to the product of the covered area on level n + 1 
and the uncovered area on level n. The mass transfer 
function, p, is modeled as a linear function of temper- 
ature, p(T) = IcoT. It is assumed that the parameters 
J, T, and Ice are all non-negative. The initial conditions 
for the model are Be = 1.0 and & = 0.0 for i = 1,2,. . . . 

The output of the MTM is a RHEED signal. This 
sensor gives morphology [l, 21 information. Therefore, 
one control aim is to track a given, known, desirable 
RHEED pattern. The diffracted intensity is the square 

modulus of the diffracted amplitude [9]. Simplifying 
assumptions can be made including that the diffracted 
intensity comes from top layer scatterers only and that 
momentum transfer parallel to substrate is zero. Under 
these assumptions the RHEED output of the model is 

I = Fp, - e,+d(-q” 

2 

(9) 
n=O 

Figure 4 shows a simulation of the MTM with the linear 
mass transport function, constant inputs J = l,T = 1 
(in normalized units), and mass transport coefficient 
,+e = 100. Each subsequent curve in the top plot is the 
coverage of a new layer. The growth is ‘near perfect” 
in that at any time there there is one layer which dom- 
inates the growth activity. The output clearly displays 
oscillations characteristic of a RHEED sensor pattern. 
Note that the output of the MTM does not exhibit the 
decay envelope as seen with an actual RHEED system. 
See Section 6 for a model that display some oscillation 
decay. The MTM does exhibit one important charac- 
teristic of MBE growth, and that is “recovery”. Figure 
5 shows a simulation where the incident flux was shut 
off half way through the run. Because the MTM has 
diffusion terms in its dynamics, the surface smoothes 
and the output signal indicates that the surface has 
“recovered”. 

Tracking of a desired trajectory is easily achieved with 
state feedback. The control law used was 

‘LL(Q = K(&ks(t) - x(t)) 

where x&s(t) is the desired state trajectory, and the 
feedback gains, K, is a 2 x n matrix of all ones. Figure 
6 shows the states and output for the MTM when the 
initial condition was perturbed to Br = 0.5. Close track- 
ing was achieved after approximately three seconds. 

6 A Distributed Mass Transport Model 

In [9], Cohen et. al. presented a model that takes into 
account the lateral structure in a plane. The adatoms 
are distributed among the layers according to the num- 
ber of reactive sites available. The model, is formulated 
as follows. Of the J(& -f&+-r) atoms arriving on top of 
the nth layer, a fraction, (Y, transfer to the nth and the 
remaining fraction, 1 - cy, remain on top of the nth and 
contribute to growth of the n + 1 layer coverage, en+r. 
This model does not exhibit recovery because there are 
no terms in its dynamic equations that allow diffusion 
to occur. 

We modified the Cohen model in the following way. 
We added diffusion terms similar to the ones in the 
MTM. The differential equations describing the growth 
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for each layer are 

26% = a,J(& - &+1) + (I- %-1)4&-l - 42) 

+kJT&+1(&-1 - 4%) - ~0979,(&-2 - &L-l) 

The distribution of incoming adatoms according to the 
number of reactive sites (step sites) is given by 

&(4x) cl 
n = A&(&) + &+l(b+l) 

where A is a constant, dn(on) is the perimeter of the 
nth layer and CY~ = 0 if d, = 0 even is d,+l = 0. The 
following assumptions are made: 

l For less than half filled surface there is a fixed 
number of clusters, each with the same perimeter. 

l For more that half filled surface, there is a fixed 
number of holes, each with the same perimeter. 

Thus we choose, 

&(b) = I 
(3w 

(1 -nf3A)2), 
for en <_ 0.5 
for 8, > 0.5 

Figure 7 shows a simulation with J = 1, T = 1, 
ko = 1.0, and A = 0.88. The output oscillations show 
decay on the upper envelope. There is no decay on 
the lower envelope as is observed in actual RHEED 
data. Figure 8 shows successful tracking results using 
the same control law as the one in Section 5. 

7 Concluding Remarks 

Measuring “conserved” growth properties leads to nat- 
ural control. Simulations show D/F (R)-control more 
effective than flux (F)-control. The crude estimate of 
layer growth time produced some poor estimates of 
growth values. This can be improved. With the MTM, 
RHEED tracking can be achieved. Ultimately it is de- 
sirable to directly control device properties, but this 
needs a structures-property model. 
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Figure 1: MBE chamber at the HRL Laboratory 

Figure 2: q(t) vs. e(t) for R = D/F E [104, 105, I@], flux 
F = 1 ml/set ==+ (3 = Ft = t 
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Figure 3: Upper: Q(n,R) vs. n = 5,10,15 for R E 
[.l, l] x 106. Lower: Area under q for constant 
flux F = 1, over any monolayer as a function of 
R. 

Figure 4: Mass Transport Model States and Output 

Figure 5: Mass Transport Model Recovery 

Figure 6: Mass Transport Model Tracking 

Figure 7: Distributed Mass Transport Model 

Figure 8: Distributed MTM Tracking 
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Simulated Layer-to-Layer Morphology Control 
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