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Abstract—It is shown that every scalar closed-loop output of
a linear multivariable type m servomechanism, where m is larger
than one, will always track its corresponding reference trajectory
with an instantaneous tracking error whose integral over time
identically vanishes. This is true for all polynomial reference
signals of up to order m — 2. The simplest implication of this
result is that the step responses of a multivariable servomechan-
ism, which is capable of asymptotically following ramp signals,
must all display overshoot. This is analogous to the familiar
classical control result. New insight into tracking of dependent
signals is also provided using the notion of “generalized” system
type. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction
In scalar servomechanism theory, e.g. see Franklin et al. (1994),
system type is a well-established concept for assessing the
asymptotic (polynomial) tracking error properties of a closed-
loop system from an examination of its open-loop transfer
function. It is also generally accepted that two criteria of good-
ness used for the problem of designing a servomechanism are the
degree of asymptotic accuracy and the quality of the transient
response. Nevertheless, only recently (Leon de la Barra and
Fernandez, 1994), the transient tracking error properties of type
m scalar servomechanisms have been the subject of rigorous
attention. This paper generalizes the results in Leon de la Barra
and Fernandez (1994) to the multivariable setting, simulta-
neously providing new insight into a “generalized” system type
notion available in the literature (Emami-Naeini, 1981), as well
as into the input-output structure of linear multivariable ser-
vomechanisms.

It is known, e.g. see Sebakhy (1984), Wolfe and Meditch
(1977), and Zhang (1986), that a bounded input bounded output

(BIBO) stable type [m, m, --- m,] linear multivariable
servomechanism tracks with zero asymptotic error all
polynomial vector reference signals of up to order

my -1 my—-1 - m—1]m=2Li=1,..,n.

This paper shows that if m; > 2, the jth closed-loop output of
a BIBO stable type [m; m, --- m,] linear multivariable ser-
vomechanism will track every polynomial reference input of up
to order m; — 2 with an instantaneous tracking error whose
integral over the interval [0, + oc) identically vanishes. This

determines that the tracking error cannot have a single sign for
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all values of time, and that there will necessarily be overshoot in
the response of the jth output.

The paper also introduces a number of new results which
provide a deeper understanding of the mechanisms involved in
asymptotically tracking (polynomial) vector input signals.

2. Preliminaries

We consider BIBO stable type [m, m, --- m,] linear muiti-
variable servomechanisms, as the one shown in Fig. 1, whose
closed-loop reference-to-output transfer function matrix is as-
sumed to be rational, proper and given by

Gis)=[g:(5) 8209 2.5} = [9:.565)] ,

where g;(s) denotes the ith column of G(s), and g ;(s) corres-
ponds to its i,j entry, respectively. Note that G(s) is explicitly
given by G(s) = {1, + L(s)} ~'L(s), where L(s) is the open-loop
transfer function matrix, and I, is the identity matrix of size n. It
is also assumed that L(s) is free of hidden unstable modes.

Let us also introduce a family of elementary n-dimensional
vector reference trajectories given by

ith column

Ay T

r,-_,»(t)&(O, .,0, ¢, 0, 0) , 120,

where 1 <i < n,j> 0, and the superscript T denotes transposi-
tion. Likewise, y; j(t) € R", where R is the set of real numbers,
denotes the output of G(s) when its input-is r; ;(¢), and
e; /() =r; ;(t) — y; (1) denotes the instantaneous tracking error
signal, respectively. The following definition is taken from
Sebakhy (1984), Wolfe and Meditch (1977) and Zhang (1986).

Definition 1. A unity feedback multivariable linear system is
called type [m, m, --- m,] if its open-loop transfer function
matrix L(s) can be written in the form

L(s) = H(s)- i(s) , 8]

where
1

5

H(s)= diag(;l—

e gMm

), mel,i=1,..,n, (2
and

lim {Ap(s) det[L(s)]} =0, 3

where Z is the set of integer numbers, and Aj(s) is the char-
acteristic polynomial of I(s). Here, L(s) is referred to as a type
{m, m; --- m,] transfer function matrix.

Note that the n-tuple [m, m, --- m,] introduced in
Definition 1 is uniquely determined by conditions (1}+3)
(Sebakhy, 1984). Intuitively, this means that a chain of integrators
of degree [m; m, --- m,] can be isolated at the output of L(s).

Let us also introduce the following sets: Jg ={ilm; <0},
J§=tilm; = 0}, Jy={ilm; = 1},and J, = {i|m; = 2},1e. Jg,J5,
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Fig. 1. A linear multivariable servomechanism.

Ji, and J, are associated to those closed-loop outputs whose
type is non-positive, non-negative, at least one, and at least two,
respectively.

Theorem 1. Let L(s) be a type [m; m, --- m,] transfer function
matrix. Then the BIBO stable unity feedback system having L(s)
as its open-loop transfer function matrix will track without
asymptotic error every polynomial vector reference input of the
form

mi—1
(=Y ¥ ;0
ieJy j=0
0
0
ith row
r A N 4
Pl LR T o (R e + Pt @
0
0

where the coefficients r; ; can vary independently for ie J,, and
0<j<m—1.

Proaf. See Sebakhy (1984) and Wolfe and Meditch (1977). O

Note that in equation (4) r(t) =[r; () r2(t - ro(t)]5, ¢ =0, is
an n x 1 polynomial vector whose kth row is identically zero for
all time and for all ke Jg, i.e. for all those closed-loop outputs
which have non-positive type.

3. Main results

3.1. A connection between g;(s) and €; ;(t). The following lemma
relates the behaviour of the columns of G(s) at s =0 to the
asymptotic behaviour of the error e; ;(1).

Lemma 1. Let G(s) be the closed-loop reference-to-output trans-
fer function matrix of a BIBO stable type [m; m; --- m,]
servomechanism. It then follows that e; ;(r) =r; ;(t) — y; ()
satisfies

€ o+ ) =48 -g(0)#0, ieJg, (5)

—g™O)#£0, ied, (6)

iedylI<j<m—1, (7)

eo(+20)=0, e,(+x)=
€. (+00)=—g’(0) =0,

where &; is the ith column of 1, 0 is the null vector, and the
superscript (j) denotes derivative of order j.

Proof. 1t can be easily seen that the Laplace transform of e, (1),
denoted by ZTe; ;(1)] = E; ;(s), is given by

ith columa T
—
il
E; (9) = {1, - G(s)}-| 0, .4.,0,;—”,0, )0
N8 — gils)}
=g ®)

and using the Final Value Theorem leads to
. S 10— gils)
€, j(+ o) = !l_{lg {s Ei (9} =j! il_l:f(; {-—-v’— } .

If j =0, it follows directly from the asymptotic tracking error
properties described in Theorem 1 that

) 5, —g(0)#0, ielg,
;.o + o) = lim {4, — gi(s)} = { . 9
3=0 0, iel,,
ie. g(0)=4d;foriel,.
Likewise, if i € J, it follows from Theorem 1 and equation (9),
by applying L’Hépital’s rule, that
d; — g j
& j(+ o) =j! lim {—,g(s—)} =—g’0=0, 1<j<m—1
5 §
Note also that Theorem 1 establishes that fori e Jy, ¢; ,, (+ o) is
both finite and non-zero, i.c.

€. (+ 90) = m;! lim {w} = —g™0y =0

s—0 sl",-
It can also be seen that e; ;(+ %) = o forj > m, O

The following corollary relates Lemma ! to the behaviour of the
columns of the closed-loop reference-to-error transfer function
matrix at s =0.

Corollary 1. G(s) is the closed-loop reference-to-output transfer
function matrix of a BIBO stable type [m, m, --- m,] ser-
vomechanism iff §; — g(s), i € J§, has exactly m, zeros at s = 0.

Proof. Direct from (the proof of) Lemma 1. O

Remark 1. Note that the m; zeros at s = 0 in the ith column of
I, — G(s) are necessary and sufficient to guarantee that the
contribution of r;(¢) to the tracking error vector e(t) = r(t) — y(t)
asymptotically goes to zero if L[rit)] = Y 7ig" jl-ryy ™I /5™,
i€ J, cl. equation (4) for the corresponding time domain expres-
sion.

3.2. Tracking of higher order dependent polynomial trajectories.
The following proposition highlights how the overall asymptotic
tracking error e(t) decomposes into errors due to each one of the
components of a general reference input signal r(t).

Proposition 1. Let G(s) be the closed-loop reference-to-output
transfer function matrix of a BIBO stable type [m, m; -+ m,]
servomechanism, and let y(r) denote its response to
r(t) =Z,~E _,(;Z;."; ofij 0 4(£). It then follows that the tracking error
€(t) has the asymptotic value

e(+o0)

I

Z ri,m,- ' ei.m,v( +CD)

iel§

Y rio {8~ g0} = Y rim g™O).  (10)

Hijm, = 0! ieJ,

Proof. Since e(t) is explicitly given by

e(r) = Z Ziri.i.{ri.j(t) — ¥} = Z Ziri,j'ei.j(t)s

ielg j=0 ieJ§ j=0

the result follows directly from Lemma 1. ]

Remark 2. Note that in equation (10) we have that
€, m(+ o0) # 0 for all i e J§. However, if the vectors € m(+ c0),
ieJg, were linearly dependent, e(+ o) could become zero for
a non-trivial selection of the coefficients Timp i € Jg. Obviously,
this does not have counterpart in the scalar setting. It is in this
sense that a type [m, m, --- m,] servomechanism may be able
to follow, with no asymptotic error, higher order dependent
polynomial trajectories (Emami-Naeini, 1981). Thus, the stan-
dard system type definition, cf. Definition 1, does not fully
describe the tracking capability of multivariable systems with
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respect to polynomial time functions. The following example
illustrates this issue.

3.2.1. Example 1. Let us assume that the closed-loop
reference-to-output transfer function matrix of a BIBO stable
type [1 1] servomechanism is given by

2 s
s+2  (s+1)?
G(s)= 5 = [gi(s) g.(9] (11)
S

5+2% s+2

From Proposition 1 it follows that G(s) will exhibit zero asymp-
totic error for all first-order dependent trajectories

ryotriat
r(t)=
Faot 72t

satisfying

’1,1'2(1”(0)‘*"2,1'8(2”(0)="1,1'< N >+"2.1'< %)=0-
i —

In other words, the above (standard) type [1 1] servomechan-
ism will display zero asymptotic error for every first-order refer-
ence signal having the form

Tro+rit

r{t)= , rieR.

1,1
rao+ 2 t
Thus, the servomechanism whose closed-loop reference-to-
output transfer function matrix is given by equation (11) is said
to be a “generalized” type [2 2] servomechanism because of its
capacity to follow (a restricted class of) first-order trajectories
without asymptotic error (Emami-Naeini, 1981).

3.3. A trade-off between asymptotic and transient accuracies.
The following result connects e; ;. (4 00) to the tracking error

€. (0.

Theorem 2. Let G(s) be the closed-loop reference-to-output
transfer function matrix of a BIBO stable type [m, m, -+ m,]
servomechanism. It then follows that

€ jri(+0)=(j+ l)j we,—,j(t)dt, (12)

0

forieJ;,,and0<j<m—1.

Proof. 1t is clear from equation (8) that

(Jj+ D18 — gils)
Ll 1(0] =Eij4109) =%} ,
and using the Final Value Theorem leads to
€,j+1(+ 0} = liﬂ;{S'Ei.jH(S)} =(j+ l)lin;{Ei,j(s)}

=(j+ Dlim {LLe; (0]}

+
=(j+ l)lim{f e; (1) e“s‘dt} (13)
S0 [
and the result follows by making s = 0 in the above Laplace
Integral.t 0

tNote that s = 0 is in the region of convergence of integral
(10) since we are dealing with BIBO stable servomechanisms.

Note that equation (12) constitutes the multivariable generaliz-
ation of the familiar classical control statement “ ... the error in
following a ramp is the integral of the error in tracking
a step...”". Theorem 3 follows readily from Lemma 1 and
Theorem 2.

Theorem 3. Let G(s) be the closed-loop reference-to-output
transfer function matrix of a BIBO stable type [m; m, -+ m,]
servomechanism. It then follows that

'[ e (ndt = Jl) ' () =y de =0, (14)

0

forieJ,,and 0<j <m; — 2.

Theorem 3 states that y; ;(t) determines equal magnitude
areas below and above the corresponding reference input r; ;(t).
In other words, y; ;(t) will always overshoot r; j(t). A straight-
forward generalization of Theorem 3 is stated below.

Corollary 2. Let G(s) be the closed-loop reference-to-output
transfer function matrix of a BIBO stable type [m; m; -+ m,]
servomechanism with polynomial vector reference input
r(t)= Zmz Z;";I,Z ri.; T:, j(t) and associated output y(t). It follows
that

J me(t)dtzj 1{r(t)~y(t)} dt = 0. (15)

o [}

Proof. This is a simple linear combination of the integrals in
equation (14). O

Remark 3. Corollary 2 determines that y(r) defines equal magni-
tude areas below and above the corresponding reference input
r(z). In other words, y(¢) will always overshoot r(t). Note that
overshoot during set point changes is undesirable in many
practical problems, see e.g. Ebert et al. (1995) for a rapid thermal
processing application where overshoot must be avoided. In
process control, for example, the optimum set point may be
close to an economic or a safety constraint. As a result, over-
shoot of a set point could lead to a violation of a constraint
possibly endangering process operation, see Jayasuriya and
Song (1996) for further motivation.

Note also that in contrast to Theorem 3, Corollary 2 admits
simultaneous set-point changes for all the closed-loop outputs
having type larger than one. In addition, the coefficients r; ; can
take arbitrary values. The following example illustrates the
results presented in this subsection.

3.3.1. Example 2. This example is borrowed from Porter and
Bradshaw (1974), where a type [2 2] linear multivariable servo-
mechanism having a closed-loop reference-to-output transfer
function matrix given by

31 121 527

4

=t t—s+ 57+ 65+ 1
| 36s + 3 s 365 + 6s +
Gls)z=——2
G+ 77, 690 799
— 8 S s+ ==
36 77 77
5, +1057
36 7S
1945 307
_94___3 P ; 6 1
R TIRA T

was introduced. It is straightforward to verify that 8, — g;(s) has
exactly m; zeros at s =0, i = 1, 2, cf. Corollary 1.

Figures 2 and 3 display the closed-loop response
¥(0)=[y((1) y2{)]" to the polynomial vector reference input

1
r(t)=ry ot) + ry0{t) = (1>, t>0. (16)
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Fig. 2. First closed-loop output and reference signal.

O - B Y

2 4 8 8 10 12 14 18 18

Fig. 3. Second closed-loop output and reference signal.

It is obvious from these figures that each output defines equal
magnitude areas below and above its corresponding reference
trajectory, see equation (15) in Corollary 2. Note also that the
occurrence of overshoot is not due to complex conjugate poles
in G(s), is it neither related to some ad hoc structure in r(t) nor in
G(s) itself, but it is due to the inherent property predicted by
Corollary 2.

A limitation of the results in this subsection is due to the lack
of an estimate for the peak deviations in each of the closed-loop
outputs below and above the corresponding reference trajec-
tories. Note that in Corollary 2 the actual transient behaviour
of the Ith closed-loop output, /e J, will depend upon
{g1.j(s),j € J2}, together with {#[ri1)],j€J,}. This makes it
hard to predict the peak deviations of the /th closed-loop output,
e J,. Nevertheless, it is possible to conjecture that the existence
of complex conjugate poles in G(s) will tend to increase these
peak deviations when compared to servomechanisms having
only real closed-loop poles.

From this perspective it is obvious that the overshooting
phenomenom which has been exposed in this subsection is
indeed a multivariable feature, and also an essential manifesta-
tion of a trade-off between asymptotic and transient accuracies
in multivariable servomechanisms.

3.4. Characterizing the entries of G(s). The proposition below
characterizes the scalar entries of the closed-loop reference-
to-output transfer function matrix of a BIBO stable type
[my m, --- m,) servomechanism.

Proposition 2. Let G(s) be the closed-loop reference-to-output

transfer function matrix of a BIBO stable type [m; m, --- m,]
servomechanism. It follows that
rodii s
gi.i(s>ﬁZ;"’—’,, iel, (1

(ZoJii’ S

where d; ;;=f;,1=0,...,m;— 1, n;; >m — 1, and
it

98 =", i#jjed, (18)
! 2o fisas

withd; ;. #0, fi ;0 # 0, n ;> m; In other words, g; ;(s) is the

closed-loop reference-to-output transfer function of a BIBO

stable type m; scalar servomechanism (Ledn de la Barra and

Ferndndez, 1994), and g, ;(s) has exactly m; zeros at the origin.

Proof. 1t follows from Corollary 1 after a straightforward but
tedious derivation which also utilizes some of the results
available in Le6n de la Barra and Ferndndez (1994). ]

Remark 4. If k € J5 we can only state that g, ,(0) # 0, for some
[ # k, or g, ,(0) # 1. Remember that G(s) has been assumed to
be both proper and BIBO stable. This obviously imposes further
constraints on the values of n;;, ks, m;; kij, fii and fi
Nevertheless, the only constraints directly linked to positive
system type are those given in equations (17) and (18).

Proposition 2 enables us to evaluate the (standard) non-nega-
tive type of a BIBO stable linear multivariable servomechanism
just by inspection of the corresponding closed-loop reference-to-
output transfer function matrix.

4. Concluding remarks

The paper has presented simple relationships between the
closed-loop reference-to-output and reference-to-error transfer
function matrices of a BIBO stable linear multivariable ser-
vomechanism and the asymptotic behaviour of the tracking
error (Lemma 1 and Corollary 1). Insight has been given into
how a BIBO stable linear multivariable servomechanism may
follow without asymptotic error dependent polynomial trajecto-
ries of higher order than those defined by its (standard) type
(Proposition 1). Finally, the reader is now fully aware of the fact
that BIBO stable linear multivariable servomechanisms which
are required to follow arbitrary polynomial trajectories of order
[mi—1my—1 - m,— 1] without asymptotic error will
always have to exhibit overshooting lower order responses
(Corollary 2). Essentially identical results are valid for discrete
time multivariable servomechanisms.
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