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Project Goals Model-Based Control (MBC) Design Experimental Validation

Develop a new generation of temperature controllers that can achieve significant reductions in

: ; ! . of . . Design Process Advantages (d Near time-optimal (NTO) and MBC have been tested on MOCVD Equipment and compared to simulation.
settling time while maintaining temperature accuracy and uniformity.

d The TTO method has been simulated, but we expect to begin hardware testing soon.
Construct Model-based Control Design — Control Structure

Demonstrate sufficient improvement in throughput to commercialize the controllers and reduce RSl

Model ; . : MQW Ramp-up
Controller is tested in
the cost of LEDs. simulation for wide range Ramp-up Soak Ramp-down . <

Demonstrate the feasibility of model-based optimal/learning control that can maximize e = Much of control designcan , | Feed-Forward « Feedback u | chamber i - _TTO (Simulation) MBC (Exp) 1 1

performance. Cso.ntrc;llt.er in ':Z :'isfr:%e‘:"tifhout ACCESS 10 Control Control p
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= Ability to do controller
‘ development in parallel

with chamber
Validate development.
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Both NTO and TTO showed significant reduction in
MQW cycle time.
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o ———— * Model-based control has been demonstrated to provide
GLASS INSULATOR : e significant improvements by reduction of settling time, as ILC was implemented to improve system robustness .
Sapphire substrate CATHODE ANODE e === shown by this data. ILC uses both models and measured data to improve the control

Sze, Figure 9.10 ) (+) performance from trial to trial (run-to-run), i.e., it learns the system
* The addition of Feedforward control (FF) could dramatically 1 ’ 1 " dynamics through repetitive trials.

Stevenson, IEEE Spectrum, 2009

improve this reduction. The system dynamics thus learned can be effectively used to reduce

‘ : the error in subsequent trials.
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 The temperature during growth significantly effects the color (and other properties) of the emission. | [ |[—MBTC Midde ' develop FF strategies have been developed.
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J Reducing the transition time from one growth step to another can significantly improve throughput. ¥ |- -Pi outer « Several strategies have been investigated, including a robust

FF strategy that can accommodate model uncertainty.

 In production of the LED, there are many sequential growth steps at different temperatures.
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Simulation with ILC shows improvement in tracking response with
each iteration.
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No growth until temperature is within desired bounds.
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Summary of Accomplishments

Settling time

Nitridagion " 1 Physics-based models have been built that match experimental data.
InGaN InGaN  InGaN With Time Optimal Control O Improvement of ramp up performance is desirable to '

Layer i increase the throughput. An estimator has been built to provide quantitative estimates of the model parameters.
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. : | 1 An improved true time-optimal algorithm, TTO, was discovered and tested in simulation.
> Time k o Feed-forward control that uses the plant model and desired output |
;‘r‘]’piet:efate an optimal output trajectory and corresponding control Feedback control and ILC were integrated into control architecture for greater

o Computation of FF profiles is completed prior to the actual use robustness.

. U The time optimal problem has been approximately solved by using NTO algorithm. Demonstrated effectiveness of integrated control approach in simulation and
PhySICS'based Model of MOCVD U Improved time optimal algorithm has been discovered during Phase | research. experiment

Thermal Model of MOCVD System

Near Time Optimal Approach True Time Optimal Approach

Showerhead/Gas Inet Wafers Proposed Phase Il Program Effort
_¢ l l l l l l l l l l l l l l l l = An accurate heat transfer model was developed for Model-based
Control (MBC) Design. : : : . o . . . .
Cooled walls = Approximately solves the time optimal problem. The solution is not the = Optimizes time directly automating the generation of r. . . . . ]
- Dominated by radiative heat transfer. theoretical global time-optimal, but a practical near-optimal solution. = The heuristic logic associated with the NTO implementation can be Use learning algorithms to estimate best nominal plant model and uncertainty envelope
ST ——Rotating susceptor L o . = 7 must be chosen carefully. The time-optimal performance of the NTO removed. .
e — ~_ " Conduction is important within solid components. depends on a fair estimate of the maximum ramp rate. for use in the RObUSt NTO & FB contro"er-
Heaters . . . . . .
" Convection matters since operating conditions (temperature, gas Integrate the identified uncertainty envelope into a Robust NTO design.
Radiation l, composition, pressure, rotation rate, etc.) vat:y considerably during | o . . .
Exhaust shields growth, and these parameters affect convection. Automate existing NTO & FB design to use updated nominal and uncertainty model on-
Robust Feedback Control
the-fly.
O Model parameters are not known exactly, and feedforward controls are sensitive to the uncertainties. Build the software prototype of the integrated Robust NTO & FB controller and
Streamlines and Velocity in Rotating Susceptor MOCYD System e e e O The feed-forward controls are combined with a feedback control for robustness. demonstrate on commercial MOCVD equipment.
e _ e 1 Feedback controller corrects for errors caused by model parameter uncertainties.
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DI = Gas pressure
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Temperature error of Model
T T T T T

; o . . technology for the LED and semiconductor equipment industries
- 2 ol oted £ y Effects of Uncertainty in Model Parameter (8% error in hsus)
. 1 Difference between model and data " Model was validated for a wide . . .
g 4 range of temperatures, pressures, NTO TT0 Our Areas of Expertise: Our Industries: Contact Information:
E p rotation rates, gas flows, and gas I T ' ' [ [ ' ' ' ' ' ' . . .
s, _ compositions. r r control design " semiconductor SC Solutions
L ! ! ! ! I B NTO taint = i . .
° Estimate based on data \ l\t/)lodecll- u_)%_y) = Model errors are small (<3°C) over : W/O uncertainty ! TTO W/O uncertai phyS|Cs_ba Sed model | ng [ | LE D 1261 Oa kmead Pkwy
60 " | | | | | r roller the entire range of operating o) g [
- ﬁ Convective heat ransfer S conditions. Z software development " solar Sunnyvale, CA 94085
~ 40 calc . g E& I . I u .
g %Zfi:e,;?zegéa:;t:usceptor _)M_y) = Model uncertainty (characterized # NTO w/ uncertainty in hsus TTO w/ uncertainty in hsus Optl mization » d€erospa C | T: 408.617.4520
% 20 1 heat transfer coefficient by susceptor convection, hsus) S Stem identification % e ? N '. 7 .
= Computed based dn inbuts provides bounds for robust was small, but must be addressed Y . . i e =\ F: 408.617.4521
oL | | | " control design. in control design. fault diagnostics T Flis -‘
2000 4000 6000 8000 10000 12000 14000 ' ' ' ' ' ' ' ' '

E: jle@scsolutions.com
www.scsolutions.com

{s] signal processing


mailto:jle@scsolutions.com

